

LAW ENGINEERING TESTING COMPANY

REPORT OF SUBSURFACE EXPLORATION
SETTLEMENT STUDY
CRANEY ISLAND DREDGE SPOIL
PORTSMOUTH, VIRGINIA
LETCO PROJECT NKS-1175C

PREPARED FOR DEPARTMENT OF THE ARMY NORFOLK, VIRGINIA

CAY DIGINEERING TESTING COMPANY TRANSTAL SHEAR TEST

CLAY, FINE SAND SOME VOIDS TEST VITH STRAIN CONTROL THOUSENT HARD SING AND HELPITTS COFFICIANCY ISLAND ROTHER NUMBER IS 2-3 UN # 4".
SAMPLE LECHTIFICATION IS SELT TO M. SOFT DARK GRAY OF NOTACOLIDATED UNDARINED COMPRESSION

PROVING RENG 310 CALIBRATED 11 / 1984

| P R O P E R T | E S | 1500 |

CALCULATED FROM MEASURED VOLUMS CHANGE COMSOLIDATED PROPERTIES

CUTFUT DATA

*	ACTOR		000	*		55.55		40	280	250	: 22	225	**	77	293	1	9/6		AMETERS	0	1.5	F2 V2		
	th.		,					-					-	-	-		e.	(XSE)	O.		9.0	6.7		
0104	SATIO		2 626	2 626	61	6.3	6.2	2.626	2. 526	2.626	2 626	1 620	-0	.0	2 626		0	CKSF	CAMBRIL	00	13			20
TUME	AIN	(00)	000	000		0	0	000	0	000		0	000	13	000		233		RATIO	00 1	1 16	1.64	96 1	1 10
TOA	ST3	20,	. 00	0				0			00			0	00		TOTAL	STRESS	RATIO	1.00	1 13	1 33	1.43	1.49
SHEAR	FIAFF		0000000	301646		017559	026522	038820	944556	063237	124060	196052	118150	136451	122547		1.4	5163	61	10 :	. 95	. 55		4.2
7	**		-														See	2161	103	1 01	66	90	0.6	9.2
NI CALL		M. W.	999999	001546	300414	17529	17	35850	44992	42287	17:50	36922		17.0	\$2547			(XSE)		00		46		99
-1			•	**		0	0	0	0		47.	7	-		-		5:5:	(352)		0 .	-	1 36	4.	1.51
	******			.,		,	41	,					:	-1			SEASONG.	номета			•1	**		

	1 14			60	32	13	74
15		6.5	. 58	17	5.5	6.51	17
	252	9 57	2.5	40	4.7	4.6	6.0
2 63	2 82	2 88	2.29	2.13	1 13	2.67	e:
					1.47		
13	. 30	3.0	4.0	4 7	. 42	67	7.5
40	9.5	3.6	3.2	0.6	6.0	9.0	99
0	3.1	3:	99	6.5	62.	.,	99
1 54	1 55	1 57	1.53	1 43	. 68	44	. 44
,			r.	0.	11	":	• ?

LAW INCINCERING TESTING COMPANY TRIAZIAL SHEAR TEST

LITTLE FINE SAND. SOME VOLES CROSCOL MANE 4 NG ARE NEW-1175 G OF E CRANEY ISLAND SOLVING NUMBER IS UD-2 # 16 4*.
CAPILL IDENTIFICATION IS VENY SOFT DARK GRAY GLAY VA

STRAIN CONTROL

PROVING KING 520 CALIBRATED 11 / 1984

COLLECTIONITY UNDANINED COMPRESSION ISST WITH

STECHTS GRAVITY 2 6.69
LIGUTO LIMIT
TEASTIC LIMIT
MEASURED VOLUME CHANGE 2 -4.606 INS
CLC PRESSURE 3 38 KSF
CONSOLIDATION PRESSURE 2 50 KSF

CONSOLIDATED	S 491 INCHES	2 479	NI DS +89 5	129 43 FERCENT	85 92 PCS	37 45 PGF	100 01 PERCENT
INITIAL	. 3 775	4 140	6 202	153 22	4 82 79	52.63	. 99 8:
CRUPERTY	HELGHT	VOID RATTIO	4854	PERCENT MOLETURE	WIT DENSITY	DAY DENETTY	PERCENT SATURATION

- CONSCL'DATED PROPERTIES CALCULATED FROM MEASURED VOLUME CHANGE 2707

OUTPUT DATA

FACTOR 1 915 1 944 1 941 1 944 1 941	h. ^ C
AC.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	KSF
	a.
9	-
0 + 0	-
263	
917	1
10	-
62	-
77	
m	-
47	1
m	1
00	1
40	-
0	ri
0	1
eu.	1
0	
ACTOR	í.
e	

37	53	8.7	7.8	4.0	6	0.6	7.6	6.	01	6.8	9.4	50	60
ë	2.6		2.3	;;	1.9	13	7.2	69	33	13	25	24	20
1.5	14	1.3	91	20	. 19	6.7	1 3	1.3	50	6.1	::	3.0	0 11
									1		2 : 5		
											1 41		1 39
11	2.1	17	1.7	1.4	1.3	4	89 11	1.7		**	97	: 7	14
00 07	35	67	34	**	32	7	1.1	V*	125	67	9:	2.3	7
67	6-	3.6	3.4	3 €	3.7	10	22	**	325	**		67	
6.2	9.9	6.8	0 0	70	20	6.0	6.9	**	20	2.0		1:	9
67	4	67	0		0		0.1		. 2	12		**	1.0

STRESS-STRAIN CURVES

& , MIARTE JAIXA

NORMAL STRESS, KSF

Soil Classification Soft Dark Grav Clay (CH)

SAMPLE NO.	(1)	(2)	(3)
Confining Pressure, ksf	0.5	1.0	
Initial Length, In.	5.78	5.80	
Initial Diameter, In.	2.86	2.86	
Wet Unit Weight, pcf	82.8	83.3	
Moisture Content, %	153.7 115.3	115.3	
Initial Void Ratio	4,140	3,257	
Initial Percent Saturation, %	66	93	

TRIAXIAL SHEAR TEST

Type of Test: Consolidated Undrained w/PP

Undisturbed	.008 in/min	Depth: 6 & 16 ft	Date: 12-30-85
Type of Specimen:	shear.	B-5	1175
lype of	Rate of Shear	Boring: B-5	Job No. 1175

LAW ENGINEERING TESTING COMPANY

LAW ENGINEERING
TESTING CONPANY

GREENBRIER INDUSTRIAL PARK
2220 PARAMONT AVENUE • SUITE 106
CHESAFEAKE VIRGINIA 23220
(304) 424-5060

January 16, 1986

Department of the Army Norfolk District, Corps of Engineers Fort Norfolk, 803 Front Street Norfolk, Virginia 23510-1096

Attention: Mr. Mathew Byrne

Subject: Report of Subsurface Exploration

Settlement Study Craney Island Dredge Spoil Portsmouth, Virginia

LETCO Project NKS-1175C

Gentlemen:

Law Engineering is pleased to present the results of our subsurface exploration for the referenced project. Our services were performed in accordance with your delivery Order Number 3 of our annual geotechnical contract with your organization. Test Boring Records and laboratory data are presented in Appendices A and B, respectively.

We have enjoyed providing these services to you and trust that you will contact us at your convenience with any questions that you may have regarding this report or the project in general.

Sincerely,

LAW ENGINEERING

Mark A Sellers Project Engineer Scott A. Barnhill, P.E. Senior Geotechnical Engineer Manager-Norfolk Office

MAS/SAB:ba

Attachments

The general field procedures employed by Law Engineering Testing Company are summarized in ASTM Specification D-420 which is entitled "Investigating and Sampling Soils and Rocks for Engineering Purposes." This recommended practice lists recognized methods for determining soil and rock distribution and groundwater conditions. These methods include geophysical and in-situ methods as well as borings. Borings are drilled to obtain subsurface samples using one of several alternate techniques depending upon the subsurface conditions. These techniques are: techniques depending upon the subsurface conditions.

- Continuous 2-1/2 or 3-1/4 inch I.D. hollow stem augers; (a)
- Wash borings using roller cone or drag bits (mud or water); 9
- (c) Continuous flight augers (ASTM Spec. D-1452).

The subsurface conditions encountered during drilling are reported on a field test boring record by the Chief Driller. The record contains information concerning the boring method, samples attempted and recovered, indications of the presence of various materials such as coarse gravel, cobbles, etc., and observations of groundwater. It also contains the driller's interpretation of the soil conditions between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soil samples plus the field boring records are reviewed by a geotechnical engineer. The engineer classifies the soils in general accordance with the procedures outlined in ASTM Specifications D-2488 and prepares the final boring records which are the basis for all evaluations and recommendations.

The final boring records represent our interpretation of the contents of the field records based on the results of the engineering examination and tests of field records based on the results of the engineering examinations at the specific the field samples. These records depict subsurface conditions at other the field samples. These records depict subsurface conditions at other the field samples. represent the field samples. These records depict subsurface conditions at the locations and at the particular time when drilled. Soil conditions at of locations may differ from conditions occurring at these boring locations. All the passage of time may result in a change in the subsurface soil groundwater conditions at these boring locations. The lines designating interface between soil strata on the records and on profiles reprapproximate boundaries. The transition between materials may be gradual. final records are included in this appendix. on profiles

The detailed data collection methods used during this study are discussed on the following pages in this appendix.

WATER LEVEL READINGS

Where impervious soils are encountered (clayey soils) the amount of water seepage into the boring is small, and it is generally not possible to establish the location of the hydrostatic water table through water level readings. The groundwater table may also be dependent upon the amount of precipitation at the site during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and recorded on the boring records. These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious soils are encountered (clayey soils) the amount of water with borings conjunction taken in are normally readings other factors. Water table

The time of boring water level reported on the boring records is determined by field crews as the drilling tools are advanced. The time of boring water level is detected by changes in the drilling rate, soil samples obtained, etc.

Additional water table readings are generally obtained approximately.one day after the borings are completed. The time lag of one day is used to permit stabilization of the groundwater table which has been disrupted by the drilling operations. The readings are taken by dropping a weighted line down the boring or using an electrical probe to detect the water level surface.

Occasionally the borings will cave-in, preventing water level readings from being obtained or trapping drilling water above the caved-in zone. The cave-in depth is also measured and recorded on the boring records.

KEY TO SOIL SYMBOLS AND CLASSIFICATION

CORRELATION OF PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY

PARTICLE SIZE IDENTIFICATION	BOULDERS — Greater than 12 inches COBBLES — 3 inches to 12 inches GRAVEL: — Coarse — "3/4 inch to 3 inches Fine — 4.76mm to 3/4 inch	- Coarse - 2mm to 1.76mm Medium - 0.12mm to 2mm Fine - 0.074mm to 0.42mm	- Less than 0.074mm
	BOULDER COBBLES GRAVEL:	SAND:	SILT &
RELATIVE DENSITY	Very Loose Loose Firm Dense Very Dense	CONSISTENCY Very Soft Soft	Firm Stiff Very Stiff Hard Very Hard
NO. OF BLOWS, N	0-4 5-10 11-30 31-50 OVER 50	77	- 0
	SANDS		SILTS AND CLAYS

SOIL LABORATORY TEST DATA SYMBOLS FOR BORING LOGS

y w - wet unit weight (PCF)	- VOID RATIO	 UNCONFINED COMPRESSIVE STRENGTH (KSF)
WE	20	56
No.		ď

- w MOISTURE CONTENT (%)
 LL LIQUID LIMIT (%)
- PL PLASTIC LIMIT (%)

PAGE. 9-17-85 DATE. NK5-1175C JOB NO.

BORING NO -OF

-

B-1

語の語の日

BORING NO.

P

PAGE

DATE

ON BOL

REFER TO THE ATTACHED REFERENCE SHEET FOR EXPLANATIONS AND SYMBOLS.

B-3

BORING NO

Н

-

9-24-85

DATE

JOB NO.

NK5-1175C

P.

PAGE

REFER TO THE ATTACHED REFERENCE SHEET FOR EXPLANATIONS AND SYMBOLS.

B-4

BORING NO

-

P.

-

PAGE

9-28-85

DATE

NK5-1175C

JOB NO.

BORING NO P PAGE DATE

JOB NO

LAW ENGINEERING TESTING CO.

-PAGE 10-1-85 DATE NK5-1175C JOB NO.

BORING NO.

-

Q.

LAW ENGINEERING TESTING COMPANY

YAAMMUR ATAU JIOR

C (2EE NOIE #3)	.I.9 SII	747	129	8,191 8,181	OITAR	2,69 2,70	SIEAE	Dry	79W 82.6	CLASSIFICATION CH CH	TYPE UD-1	HT937) (FEET) 7-2	1-8 I-1
0	112	42	154	8.89		69.S			8.88	СН	np-3	71-81	1-8
0	71	61	34	1.701		2.66			8.88	CF	t-an	20-22	1-8
	58	35	19	ON						HW	I-SS	6.1-0	I-8
	36	91	98							. HM	2-88	0.4-2.5	I-8
	36	6t	98							HW	£-SS	6.8-8	1-8
	801	Īψ	611	7.871						CH	9-88	0.6-8.7	B-1
	25	Ιt	63	132.2						HW	Z-SS	6.61-61	1-8
	88	Ιt	66	7.841						CH	6-88	ZO-21,5	I-8
	07	33	103	1,44,1						CH	01-55	53-6-25	1-8
	89					89.5			5.08	CH	I-an	0.11	8-2
	31	35	127	7.531		2.70			4,87	СН	s-an	0.81	8-2
	36	32	19	7.18		0.115				СН	1-88	0.1	8-2
	18	11	122	6.88		89.5				СН	z-ss	2-2-5	2-8
	09	31	16	9.86					;	СН	8-88	6.8	8-2
	88	Zt	130	8.511					1	СН	t-SS	0.8	S-8
	19	48	96	8,18						СН	9-55	0.81	8-2
	100	Ιt	Itl	7,881						СН	Z-SS		8-2

U = Unconfined Compression Test DS = Direct Shear РВОЈЕСТ ИОМВЕЯ System 3. I = Triaxial Test NK2-1112CC 2. Soil classification in accordance with Unified Soil Classification PROJECT NAME Craney Island NOTES: 1. Soil tests in accordance with applicable ASTM Standards

PROJECT LOCATION Portsmouth, Virginia

TV = Torvane Test HP = Hand Penetrometer Test

Jest noitabiloanob = J

P = Proctor Test

LAW ENGINEERING TESTING COMPANY

YAAMMUS ATAG JIOS

*	86	36	134	6.08						СН	9-55	61-8.71	t-8
	56	52	84	39.2						СН	t-SS	3.EI-SI	b-8
	-									СГ	5-22	6-8.7	b-8
	dN	dN	dΝ	8.7S				,			2-88	4-6.5	p-8
	dN	dΝ	dN	0.01							I-SS	3.1-0	t∕-8
	49	52	98	6,08		17.5			S.19	СН	E-00	0.91	t-8
	37	24	19	8.62		27.2			2.86	СН	z-an	0.11	b-8
	10	22	32	9.74		2.76			8.011	70	T-an	0.9	t-8
	LL	36	113	126.0						СН	Z-SS	23.5-25	B-3
	63	36	135	9,611						СН	9-55	8.1S-0S	£-8
	104	36	143	129.6						СН	9-55	8.61-71	8-3
	64	37	911	p.iii						СН	t-ss	3.51-51	8-3
	88	01	128	8.041						СН	£-SS	6-8.7	B-3
	۷9	82	96	6.69						СН	Z-SS	4-8.5	8-3
	91	33	6/	p. 69						СН	1-88	8.I-0	B-3
	19	35	63	8.87		2.69			4.86	СН	D-3	0.81	8-3
	99	. 42	08	6,86		2.69			€.38	СН	np-s	0.11	8-3
	,	թլժան	S ON	8.041		No Sample			6.28	СН	T-an	0.9	B-3
	16	38	159	152.3						СН	01-55	23.5-25	8-2
	83	35	118	134.5						СН	6-88	2.1S-0S	8-2
ADDITIONAL TESTS CONDUCTED (E% STON SES)		75835 1M175 P.L.	٦	JARUTAN 3RUTZIOM	010V 01TAЯ	SPECIFIC	% FINES		Met PC	SOIL CLASSIFICATION	SAMPLE TYPE	SAMPLE 0EPTH (FEFT)	BOR1NG NO.

Portsmouth, Virginia	PROJECT LOCATION	U = Unconfined Compression Test DS = Direct Shear C = Consolidation Test HP = Hand Penetrometer Test P = Proctor Test TY = Torvane Test	
NK9-1175C	PROJECT NUMBER	3. I = Triaxial Test	
Craney Island	PROJECT NAME	1. Soil tests in accordance with applicable ASTM Standards 2. Soil classification in accordance with Unified Soil Classification	: СЗ10И

ГАМ ЕИGINEERING ТЕЗТІИС СОМРАИУ

YAAMMUS ATAG JIOS

ADDITIONAL TEST CONDUCTED (E% STON 332)		1	1.7.7	3AUTZIOM 2 2 2 2 2 2	010V 011AA	SPECIFIC STIVARS	Z FINER NO. 200		Met PC Wet	SOIL CLASSIFICATION	3JAMA2 34YT	SAMPLE 0EPTH (TEET)	0R1NG NO.
	81	33		8.£8 4.88						СН	9-55	8.1S-0S	p-8
	107	75.				OL C		0 00	0.0	70	Z-SS	23.5-25	t-8
		-		112.9		07.2		0.85	0.18	СН	T-on	0.9	9-8
	43	25 25	48	7.27		99.S			4.711	СГ	z-an	0.11	9-8
	61	67	76	0.58		69.2			6.88	СН	E-au	0.91	9-8
	21	22	43							HW	I-SS	9·I-0	9-8
	34	27	19	0.07						СГ	£-SS	6-8.4	9-8
	It	SS	99	2.77	-					СН	t-SS	12-13.5	6-8
•	94	53	66	1.08						СН	9-55	8.61-71	9-8
	<u>7</u> 9	£\$								СН	9-55	20-21.5	9-8
	06	37	127	116.2		05 0			-	HW	Z-SS	23.5-25	g-8
	6/	31	911	6.181	-	69.2			6.64	СН	I-an	0.8	9-8
	09	_							83.3	СН	z-an	0.11	9-8
	39	33	15	8.75		87.5			2.58	СН	np-3	0.91	9-8
	100	LV	153	6,611		04:3				СН	I-SS	3.1-0	9-8
	110	bb	124	6.181						СН	S-SS	4-6.9	9-8
	99	31	96	5,47				-		СН	£-88	6-6.4	9-8
	96	-	134		-					СН	t-SS	12-13.5	9-g
	88		129	1.821				1	-	СН	9-55	8.81-71 8.1S-0S	9-8

Portsmouth, Virginia	NOTTADOL TORGE	t DS = Direct Shear HP = Hand Penetrometer Test	Unconfined Compression Test	
	PROJECT NUMBER	war sks	Jest LeixeinT = T	3.
Craney Island	PROJECT NAME	applicable ASIM Standards not with Unified Soil Classification	s diw sonsbrooms of signs fiol	.1 :23TON

TV = Torvane Test

C = Consolidation lest P = Proctor Test

гьм енсінеевіне тезтіне сомрану

YAAMMUS ATAG JIOS

puelsi	guey	u)	NVM	тэзсояч		sbrás	n612 MT2A	licable	th app	in accordance mi	il tests	5: 1. 50	3TON
		-	-							,			<u> </u>
									1				
									7				

•													
	-												
								•					
	1/8	68	123	9.151						СН	Z-SS	23.5-25	9-8
ADDITIONAL TEST CONDUCTED (SEE NOTE #3		38831 1M1 TS 1 . L .	.J.J	JARUTAN ∃RUTZIOM ‰	010V 01TAR	SPECIFIC	% FINER NO. 200 SIEVE	E1GHT F Dry	Met PC Met	SOIL CLASSIFICATION	SAMPLE	SAMPLE HTG3G (T337)	10.

Portsmouth, Virginia	NOITADO TOGATION	the Tantamentaned back - du	teal notices of the series of	
NK2-1175C	РВОЈЕСТ ИЈМВЕР	System	T = Triaxial Test U = Unconfined Compression Test	
Craney Island	ЭМАИ ТЭЗСОЯЧ	Dlicable ASTM Standards e with Unified Soil Classification	Soil tests in accordance with app	

LABORATORY TESTS

SOIL CLASSIFICATION

ciassified by an engineer. The soils are classified according to consistency (based on number of blows from standard penetration tests), color and texture. These classification descriptions are and enable the engineer to apply his past experience to current problems. In our investigation, Soil classifications provide a general guide to the engineering properties of various soil types jar samples obtained during drilling operations are examined in our laboratory and visually included on our Test Boring Records. The classification system discussed above is primarity qualitative, and for detailed soil classification D-2487). Each of these classification systems and the in-place physical soil properties provides two laboratory tests are necessary; grain size tests and plasticity tests. Using these test results the soil can be classified according to the AASHO or Unified Classification Systems (ASTM) an index for estimating the soil's behavior. The soil classifications and physical properties obtained are presented on the following sheats.

GRAIN SIZE TESTS

Grain Sizu Tustr are parformed to determine the soil elessification and the grain size distribution D-2217 (viet proparation). The grain size distribution of soils coarser than a number 200 days The soit complex are prepared for tarling according to ASTM 421 (day preparation) or ASTM (0.074 mm opening) is determined by passing the samples through a standard set of nasted distribution calculated from the measured settioment rate. These tests are conducted in staves. Estacials passing the number 200 steve are sarpended in virter and the grain size accordance with ASTM D-422.

PLASTICITY TEST

The son plusticity characteristics are defined by the Plastic Index (P1) and the Liquid Limit (LL) Plasticity tests are performed to determine the soil classification and plastinity characteristics The P! is related to the volume changes which occur in confined soils beneath foundations. The PI and LL are determined in accordance with ASTM D-424 and D-423, respectively.

PHYSICAL SOIL PROPERTIES

The in-place physical properties are described by the specific gravity, wet unit weight, moisture sample weight by the known volume. The dry unit weight, void ratio and percent saturation content, dry unit weight, void ratio, and percent saturation of the soil. The specific gravity The wet unit weight is found by obtaining a known volume of the soil and dividing the wat and moisture content are determined according to ASTM D-854 and D-2216, respectively.

ONE DIMENSIONAL CONSOLIDATION PROPERTIES OF SOILS

REFERENCES:

for "Standard Method of Test Properties of Soils". ASTM Specification D-2435-70, One-Dimensional Consolidation

of "Laboratory Determination ASTM Specification D-2716-71, Moisture Content of Soil"

"Standard Method of Test ASTM Specification D-854-58, Specific Gravity of Soils"

Soil Testing for Engineers, John Wiley and Sons hapter IX, "Consolidation Test". Inc., 1962, Chapter IX, T. W. Lambe,

PURPOSE AND SCOPE:

This test procedure covers the determination of the magnitude and rate of consolidation of soil when it is restrained laterally and loaded and drained axially. The values can be evaluated to deterloaded and drained axially. The values can be evaluated to detemine magnitudes and rates of settlements beneath foundations or other engineered structures.

EQUIPMENT

trimmers and Loading Devices with consolidometers, balances, trimmers and sorted apparatus as described in ASTM Specification D-2435, cluding either Wykeham Farrance or Anteus Loading Systems.

PROCEDURES:

tube, is carefully removed from its protective cover and the soil constants, including unit weight, moisture content and specific gravity are determined as stated in the referenced specifications. The sample, usually an undisturbed sampled encased in a

A single section of the specimen is then trimmed into a disc, 2.4 inches in diameter and 1 inch thick. The disc is confined with a stainless steel ring and sandwiched between porous plates. The sample may then be flowed to the desired percent saturation and loaded incrementally. The deformations for each load increment are measured and the percent consolidation and coefficients of consolidation are then computed.

REPORT:

The test results are depicted on the attached "Consolidation Test Sheet" as load versus percent strain, with a second graph depict-ing the coefficient of consolidation and percent initial consolidation versus load.

TESTING PROCEDURE LD-2850 (2) UNCONSOLIDATED-UNDRAINED TRIAXIAL SHEAR TEST OF SOILS

REFERENCES: ASTM Specification D-2850-70

John Wiley and Sons, T. W. Lambe, Soil Testing for Engineers, Inc., 1962, New York, New York.

EQUIPMENT:

The equipment used to perform the Unconsolidated-Undrained triaxial shear test includes: triaxial machine including a triaxial cell, specimen trimmer with accessories, membranes, balances, drying oven, moisture content cans, rubber strips for binding, air reservoir and regulator, gauges, calibrated burrette and electrical pressure

PROCEDURE:

Triaxial shear tests are performed on several sections of a relatively undisturbed sample of soil that have been exa relatively undisturbed sam truded from the sample tube. The specimens are trimmed into cylinder 1.4 inches in diameter and approximately 3 inches high, and encased in rubber membranes. Each specimen is then placed in the compression chamber and confined by an all-around air pressure. Drainage is then prohibited and the sample is loaded axially until a shear failure is reached or until the total axial strain is at least 20%, whichever occurs first. Stressyersus strain curves and a Mohr rupture envelope are plotted for each sample.

REPORT:

The sample identification, stress versus strain curves, Mohr circles and rupture envelope, unit weights (wet and dry), moisture content and void ratio are included on the Triaxial Shear Test Sheets.

In addition, the shear strength parameters (cohesion and angle of shear resistance) are listed.

LAW ENGINEERING TESTING COMPANY CONSOLIDATION TEST DATA

ISLAND NK5-1175C CLAY GRAY SOFT NO. ARE CRANEY IS B-1 UD-1 NUMBER IS B-1 UD-1 IDENTIFICATION IS DARK PROJECT NAME & NO. BORING SAMPLE

82.60 161.45 100.60 4.3331 0 11 WATER CONTENT (%)
SATURATION (%) INITIAL INITIAL INITIAL INITIAL 2.70 79.86 60.33 11 11 11 11 SPECIFIC GRAVITY
WET SAMPLE WT (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS SECONDARY) PRIMARY & TEST DATA REDUCTION (INITIAL,

×	SEC	11	9	m	21		6	얺	ហ	ର	œ	15	40	ñ	16	F 21	35	27
×																		
SAMPLE HT	AT DEND	.7486	+247.	.7424	.7186	.6814	. 5646	. 4951	.4412	.3752	.3803	.3852	. 3930	. 4027	. 4095	.4115	. 4143	.4155
T90	MIN	1.75	3.50	2, 75	2, 75	7.75	7.75	5.50	5.50	4.50	5.52	2.20	1.50	3, 75	1.00	1.50	. 75	1.50
DEND	(IN)	.3734	.3722	.3672	.3434	.3062	. 1894	.1199	.0660	00000	. 0051	.0100	.0178	. 0275	. 0343	. 0363	.0391	.0403
D 90	(II)	.3737	.3722	. 3677	.3568	.3062	.2088	. 1386	.0732	.0184	.0045	1600.	.0142	. 0274	.0290	.0358	.0381	.0359
DO	(IN)	.3747	.3729	.3706	.3667	.3306	.2870	. 1653	. 1098	.0604	.0003	. 0065	.0104	. 0238	. 0282	.0351	. 0372	. 0393
STRESS	KSF	0.5	026	050	2		ı	0	2:0	4.0	2.0	1.0	2	2		.05	.026	.02

TEST DATA REDUCTION FOR PRIMARY & INITIAL, ELIMINATING SECONDARY

													_	_			_	
S			. 080	. 121	. 272		. 896		. 199		. 117	. 101	. 109	.179	.038	.037	.048	. 054
) W	FT2/KIP		.28E+00	.27E+00	.31E+00	. 53E+00	.47E+001.	.14E+001	.68E-011.	.35E-011.	.33E-02	.57E-02	.12E-01	.45E-01	.21E-01	.42E-01	.11E+00	.19E+00
	/ FT/DAY		. 60E-02	.72E-02	. 80E-02	.46E-02	.33E-02	.13E-02	.57E-03	.32E-03	. 63E-04	.11E-03	.36E-03	.54E-03	. 95E-03	.13E-02	.64E-02	. 58E-02
2			.34	. 43	.41	. 13	. 10	.11	60.	60.	. 18	. 18	.28	. 12	44.	. 29	.59	.30
* AVG	*STRESS		0.	0.	.1	œ.	4.	0	1.5	3.0	3.0	1.5	. 8	4.	ci.	.1	0.	0.
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
VOID	RATIO	4.323	4.314	4.280	4, 198	3.914	3,160	2.777	2.416	2,045	2,080	2, 111	2, 143	2,215	2, 226	2, 237	2,251	2.257
STRAIN	×	00.	.17	.81	2.35	7,68	21.85	29.04	35.82	42.80	42.14	41.56	40.95	39.61	39.40	39, 19	38.93	38.85
SAMPLE	HI IN	.7486	.7473	.7425	.7310	.6911	. 5850	. 5312	. 4805	. 4282	4332	.4374	.4421	. 4521	. 4537	. 4552	. 4571	.4580
STRESS	KSF	.02	.026	.05	-1	.2	15	10	2.0	0.4	2.0	1.0	.5	.2	-	.05	.026	.02

LAW ENGINEERING TESTING COMPANY CONSOLIDATION TEST DATA

ARE CRANEY ISLAND NK5-1175C PROJECT NAME & NO. ARE CRANEY ISLAND NK: BORING NUMBER IS B-1 UD-2 SAMPLE IDENTIFICATION IS GRAY SOFT CLAY

88.38	145.34	106.72	3.6771
-11	11	II	II
WET UNIT WT (PCF)	WATER CONTENT (%)	INITIAL SATURATION $(x) = 106.72$	VOID RATIO
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	85.45	60.33	e. 50
11	11	11	11
_	(GM)	(00)	(IN)
SPECIFIC GRAVI	WET SAMPLE WT	VOL OF SAMPLE (CC) = 60.33	DIA OF SAMPLE

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS & SECONDARY) PRIMARY TEST DATA REDUCTION (INITIAL,

x 33 0 4 0 0 0 0 1 7 1 1 1 1 1 1 1 0 0 4 0 1 1 1	2
x N I I O 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5
SAMPLE HT AT DEND 7493 7485 7485 7481 7289 6906 6356 6042 6356 5356 5385 5432 5432 5432 5432 5432 5432 5432 543	02/6.
11. E. G. 7. P. 1. G. 9. P. 1.	3
DEND (IN) 2493 2485 2485 2889 1906 1356 1042 0641 0385 0432 0432 0484 0589	02/0.
0 90 (IN) - 2494 - 2452 - 2295 - 1965 - 1965 - 1090 - 0733 - 0450 - 0450 - 0482 - 0482 - 0579 - 0579 - 0579 - 0579 - 0579	. 0718
DD (IN) 2499 2493 2470 2315 2315 1885 1020 0625 0625 0435 0491 0697	.0715
STRESS KSF .02 .02 .02 .05 .1 .5 .5 .0 4.0 2.0 4.0 2.0 4.0 2.0 1.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 2.0 4.0 4.0 6.0 3.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	70.

TEST DATA REDUCTION FOR PRIMARY & INITIAL, ELIMINATING SECONDARY

23	.024	.328	. 603	.436	.037	.114	.095
MV FT2/KIP	.99E-01	.42E+00	.20E+00	.45E-01	.12E-02	.15E-01	.98E-01 .12E+00 .48E-01
PERM / FT/DAY	.49E-02	.15E-01	.26E-02	.65E-03	.44E-04	.32E-03	. 82E-02 . 95E-02 . 95E-03
CV FT2/DAY	. 36	. 56	.18	91.53	. 45	.16	12.
* AVG *STRESS	0.0.	- ci	4.0	3.0	9.0	0 4	u 0 0
	0 4	200	9.9	9 10	9 2	92	27.28
VOID RATIO	3.648	3,325	3.040	2.646	2.526	2,588	2.699 2.727 2.733 2.735
STRAIN	90.53	2.64	13.55	24.79	55	8 8	20.85 20.24 20.12 20.08
AMPLE T IN 7493	7489	. 7296	6478	5846	5654		
SAMPLE HT IN	7.	. 7	9.0	ທິດ		0.00	00000
STRESS KSF	.026	-10	.5.	2.0	2.0	.5.5	.05 .026 .02

AN ENGINEERING TESTING COMPAN

NAME & NO. PRE CRAMEY NUMBER IS 8-1 UD-2 PROPERTY IN THE CREATION IS GRAY

144		1-1
19		

						ioi									
			SEAS.	OYAS.			EIEI.						· 0880 ·	,0707	BITTO.
														1	8170.
DEND	(MI)		848					LABO.						SIVO.	.0720
		1.30	05.1	3" 52	8,00				1.50	5" 00	8.80		3.60		8,00
TH 3JANGS			ZBAY.				8408								
×						0	. 10								

TOUGH A			SEAT.		. 7454						+BBBB.				IEEE.	Tree.		
	MIRRTB		.00		523										20.85	80.84	\$0,12	
													88	600	0		L	
	# BVB			* .0						U)					* 051		* .0	
TIRL, EL					. 3B		42.		17.5						and def			
	MRBG					10												
		FTS/KIP		10-BBB.	· 19E+00	招		.205+00			.1SE-02			10-374.			10-38A.	
					. 070			127.			W	seo.	111	, 184	N	.095	SIO.	

LAW ENGINEERING TESTING COMPANY CONSOLIDATION TEST DATA

PROJECT NAME & NO. ARE CRANEY ISLAND NKS-1175C BORING NUMBER IS B-1 UD-3 SAMPLE IDENTIFICATION IS DARK GRAY SOFT CLAY

86.84	93, 32	91.60	2,7508
11	il	II	II
WET UNIT WT (PCF)	WATER CONTENT (X)	INITIAL SATURATION (x) = 91.60	VOID RATIO
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	83.96	60.33	2.50
11	11	11	11
TY	(GM)	(00)	(II)
SPECIFIC GRAVI	WET SAMPLE WT	VOL OF SAMPLE	DIA OF SAMPLE (IN) = 2.50

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS SECONDARY) PRIMARY & TEST DATA REDUCTION (INITIAL,

×	SEC	۵	7	30	17	31	40	0	i i	31	4	22	35	17	-	17	m	n
×	INI	26	0	เก	31	16	14	23	83	32	4	10	-1	ທ	87	0	72	84
SAMPLE HT	AT DEND	.7482	.7476	.7449	. 7383	.7111	.6087	. 5556	. 4838	.4276	. 4298	.4346	.4430	.4502	. 4537	. 4560	. 4577	. 4592
T90	MIN	S 00	4.50	4.75	4.00	6.50	9,75	8.00	6.75	5.25	1.75	2.00	4.00	6.50	1.50	4.00	S. 00	1.25
DEND	(II)	.3206	.3200	.3173	.3107	. 2835	.1811	.1280	. 0622	00000	. 0022	0200.	.0154	.0226	.0261	.0284	.0301	.0316
D 90	(IN)	.3208	.3201	.3183	.3131	. 2937	. 1981	. 1325	.0746	.0226	.0019	.0056	.0121	.0208	.0250	.0278	. 0300	.0315
00	(IN)	.3215	. 3206	.3199	.3159	.3077	. 2697	.1686	.1131	.0471	.0001	.0026	.0071	.0157	. 0256	.0261	. 0296	.0313
STRESS	KSF	.02	.026	0.5	£ -	:0	in	10	2:0	0.4	2.0	1.0	.5	.2	-	.05	.026	.02

TEST DATA REDUCTION FOR PRIMARY & INITIAL, ELIMINATING SECONDARY.

2			.024	.033	.075	.308	. 173	.874	. 958	. 703	.035	.062	.094	.075	.057	.031	. 029	. 062
)M	FT2/KIP		.12E+00	.10E+00	.12E+00	. 25E+00	.42E+001	.14E+00	.77E-01	. 28E-01	.14E-02	. SOE-02	.15E-01	.27E-01	.46E-01	. 50E-01	.92E-01	.32E+00
	/ FT/DAY		. 20E-02	.16E-02	. 22E-02	.27E-02	. 25E-02	.97E-03	.57E-03	. 25E-03	.38E-04	.12E-03	.18E-03	. 20E-03	.15E-02	.62E-03	. 23E-02	.13E-01
2	FT2/DAY		. 26	. 25	. 29	.17	60.	60.	60.	60.	. 28	. 25	.13	80.	.35	. 13	.27	. 43
* AVG	*STRESS	*	0.	0.	* .1	ď.	4.		1.5	3.0	3.0	1.5	00.	4.	· *	**	۰.	0.
		a	D	0	1	4	00	4	9	4	ın	m	a	a	0	8	9	4
VOID	RATIO	742	739	73	70	61	14	884	53	38	33	1,413	442	472	489	498	506	514
>	쮼	οi	οi	αi	αi	œ	2.148	;	-;	-;	-:	-;	+	-	-	+	4	-
STRAIN	×	00.	.07	. 33	. 93	3,41	15.89	25.92	30,63	36.28	36.00	35, 50	34.75	33,95	33.49	33.24	33.02	32.83
щ	Z	89	11	99	13	57	94	89	91	68	68	98	82	45	11	93	ei ei	98
SAMPLE		.7482	7477	.7458	. 7413	.7227	6294	5768	.5191	.4768	4789	. 4826	.4882	. 4942	. 4977	4995	5012	5026
SP	I		•			•	•		•		•				•			
STRESS	KSF	.02	.026	.05	-	.2:	147	10	2.0	4.0	2.0	1.0	.5	.2	-	.05	.026	.02

LAW ENSINEERING TESTING COMPAN

REBNUM REMUM TOLKI

		113
	AL MATER CONTENT (N) = 93.	
	AL MATER CONTENT (N) = 93.	
	AL MATER CONTENT (%) = 93.3	
	AL MATER CONTENT (%) = 93.3	
	AL MATER CONTENT (N) = 93.	
	AL MATER CONTENT (%) = 93.3	
	AL MATER CONTENT (%) = 93.3	
	AL MATER CONTENT (%) = 93.3	

ACHTAN ANIT AD TOGN SAGUDS
ACHTAN ANIT AD TOGN SAGUDS
SORWIAN SAGUDS
SMOITSBARDO SAGIS ON

	23812	BOSE.					SBBI.		INAO.		3500.	1700.	TESO.	.0256		9680.	2120.
			.3183	IEIE.	20	Hed The	2581.								.08		
	3085.									.0088	.0070						
MIM														- 1			
DEND TR	SBAT.	STAT.		EBET.	11					. 4898			SOCA.			TTEA.	SPEA.
					3.1									18	0		84
								18									

																30.		
		SBAT.								8874.								
MIRRIE		.00	.07	.33	. 93	3.41								33.95		33.24	33.08	8
		S. TAR	8. 739	13			841.8						400	1. 472	E84.1	884.1	808.1	123
							* .4					- 7		4		1. *		
			38.															
MR3q	Y FTADAY		SOE-05		SO-988		S0-355.			10000000000000000000000000000000000000	A0-38E.			. SOE-03	S0-381.	E0-389.	SSE-05	13E-01
VM			. 12E+00	. 10E+00	00+381		-ASE+		10-3YT.	. SBE-01	S0-341.	S0-30E.		. STE-01		10-30E.	10-3SE.	.3SE+00
					-	1	N. I. I.	00	ri.		0	0	reo.	SYO.	.021	. 031	. 055	380 .

LAW ENGINEERING TESTING COMPANY CONSOLIDATION TEST DATA

ISLAND NKS-1175C CLAY IDENTIFICATION IS DARK GRAY SOFT ARE CRANEY BORING NUMBER IS B-1 UD-4 % NO. NAME PROJECT SAMPLE 98.83 107.07 98.76 2.9273 11 WET UNIT WT (PCF) WATER CONTENT (%) SATURATION (%) VOID RATIO INITIAL INITIAL INITIAL 2.70 85.89 60.33 2.50 (BM) 9 (IN) GRAVITY SAMPLE WT OF SAMPLE OF SAMPLE SPECIFIC DIA OF WET VOL

SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

(INITIAL, PRIMARY & SECONDARY) REDUCTION TEST DATA

×	SEC	4	O	63	7	0	ď,	6	m	13	13	4	-1	(B)	1	0	69/	37
×	INT	91	18	15	30	1	0	-	17	m	m	m	m	11	94	m	31	40
SAMPLE HT	AT DEND	.7463	.7457	.7439	. 7382	. 7233	.6610	.5920	.5350	.4660	. 4693	.4750	. 4847	. 4971	.5014	.5047	.5068	.5080
190	MIN	.80	2.00	1.00	3.60	4.00	7.50	5.50	4.00	6.00	1.50	3.12	6.30	7.75	1.50	4.50	1.00	1.00
DEND	(II)	. 2803	.2797	. 2779	. 2722	. 2573	.1950	.1260	0690.	00000	. 0033	0600.	.0187	.0311	.0354	.0387	.0408	.0450
D 90	(IN)	. 2805	.2798	.2791	.2724	. 2587	. 1960	.1386	.0757	.0189	.0024	.0082	.0179	.0290	.0353	.0384	.0393	.0415
DO	(IN)	. 2808	. 2802	.2796	. 2761	.2720	. 2572	. 1942	.1165	. 0669	.0001	. 0035	.0093	.0200	.0351	.0355	.0389	.0411
STRESS	KSF	.02	- 026	.05	1	.2.	.5	1.0	2.0	4.0	5.0	1.0	.5	.2	, ,	.05	.026	.02

TEST DATA REDUCTION FOR PRIMARY & INITIAL, ELIMINATING SECONDARY

23			. 025	.012	. 103	. 261	. 896	. 089	. 954	. 964	.046	+60.	. 171	.149	.073	.058	.012	. 034
M	FT2/KIP		.12E+00	.37E-01	.16E+00	. 20E+00	.30E+00	.17E+001	.73E-01	.37E-01	.18E-02	. 73E-02	.26E-01	. 50E-01	.57E-01	.89E-01	.36E-01	.17E+00
PERM			.45E-02	.27E-02	.32E-02	.36E-02	. 25E-02	.17E-02	. 95E-03	.34E-03	.57E-04	.11E-03	.21E-03	.33E-03	.19E-02	.10E-02	.19E-02	.86E-02
2	FT2/DAY		. 59	1.18	.35	. 28	. 12	. 14	4	(10))?:	.16	.08	.07	.38	. 13	.57	. 58
* AVG	*STRESS		0.	0.		e.	4.	8.	1.5	3.0	9.0	1.5	ø. *	4. *	· ·		0.	0.
	_	*		•	•	Τ.		Τ.	т.	T	T	-	T	-	T	т.	T	Ť
VOID	RATIO	2,908	2,905	2,901	2.871	2, 792	2,435	2, 108	1.821	1.530	1.544	1.573	1.624	1.683	1.706	1.723	1.726	1.730
STRAIN	×	00.	.07	. 16	.95	2.96	12.09	20.47	27.82	35.25	34.89	34.16	32.84	31,33	30.76	30,32	30,23	30, 13
SAMPLE	HT IN	.7463	.7457	.7451	.7392	. 7242	.6561	. 5935	. 5387	. 4832	.4859	.4913	.5012	. 5125	.5167	.5200	. 5207	. 5214
STRESS	KSF	.02	.026	.05	1	.2	5.	1.0	2.0	4.0	2.0	1.0	.5	.2		.05	.026	.02

m m m - 0 of of the the - 10 th - 10 th - 10

BARMAN TAYATI

CONSOLIDATION TEST DATA

PROJECT NAME & NO. ARE CRANEY ISLAND NK5-1175C BORING NUMBER IS B-2 UD-1 IDENTIFICATION IS BLACK SOFT CLAY SAMPLE

155.58 96.14 4.3693 80.20 WET UNIT WT (PCF) WATER CONTENT (%) SATURATION (x) VOID RATIO INITIAL INITIAL INITIAL INITIAL 2.70 77.54 60.33 2.50 SPECIFIC GRAVITY
WET SAMPLE WI (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

×	CHE	1	7	16	ហ	7	51	4-	4-	-8	19	15	9	52	m	81	63	56	26
*	TINIT	-	31	0	20	ເກ	0	0	10	in in	0	13	60	72	4	51	83	69	53
														. 4218					
T90		MIE	1.50	1.25	1.50	00.2	2.80	7.75	6,30	5.25	5, 25	1.50	2,75	1.00	4.75	.75	. 75	1.00	2.00
DEND		(IN)	3454	3450	3431	3389	3248	. 2588	1597	. 0913	0000	0044	.0116	. 0182	. 0269	. 0332	.0370	.0403	.0423
08 0	200	(IN)	3455	3451	27.23	2200	ager.	9628	1644	5160	4460	0034	0105	. 0164	0258	0280	0345	0384	.0411
00	000	(IN)	2461	70.0	1010	1445.	2200	3264	2000	1407	7580	5000	0000	0150	0186	05750	0243	0380	. 0405
00000	מוצבות	KSF	000	20.	970.	c0.	-:	7. "	2.5	0.10	0.7	, 6	0, 0	2.4		· -	1.0	920	.05

ELIMINATING SECONDARY & INITIAL, TEST DATA REDUCTION FOR PRIMARY

8	1 .021		•		01.239	02.467	.10E+001.773									00 . 054
MV FT2/KIP	.74E-01	. 10E+00	.10E+00	. 15E+00	.31E+001	.28E+002.	. 10E+0	0-36+·	. 25E-02	. 90E-02	.13E-01	.37E-01	.15E-01	.35E-01	•	. 19E+00
PERM FT/DAY	.44E-02	.49E-02	.38E-02	.38E-02	. 25E-02	. 23E-02	.87E-03	.36E-03	.68E-04	.14E-03	. 56E-03	.34E-03	.89E-03	. 20E-02	.35E-02	.42E-02
ET2/DAY	. 95	. 79	65.	. 41	. 12	. 11	. 10	.07	. 24	.14	.39	. 08	.54	. 54	.41	. 20
* AVG *STRESS	* *	*	*	· ·	4.	* *	1.5	* 3.0	* 3.0	* 1.5	*	4.	ď.	* .1	0.	0.
VOID	4.362	4.347	4.320	4.240	3.747	3.004	2.471	1.943	1.970	2.018	2,053	2.114	2, 122	2, 131	2, 142	2,148
STRAIN	00.	. 38	. 80	2.28	11.48	25, 32	35, 28	45.11	44.61	43.72	43.06	41.94	41.78	41.		41.30
SAMPLE HT IN	.7490	7469	7430	.7319	.6631	. 5593	4848			. 4216	. 4265	4349	. 4361	- 4374	4388	. 4397
STRESS	.02	970	6 -		irc		2:0	4.0	0.0	10		0	! -	0.5	.026	.02

-

-

FINE SAND & VOIDS TRACE PROJECT HAME I NO ARE HKS-1175 CRAMEY ISLAND SOUTHS NUMBER IS UD-2 9 16.7 FT SAME ISLAND SAMELE IDENTIFICATION IS SOFT DARK GRAY CLAY.

8 C C C C C C C C C C C C C C C C C C C	
INITIAL WET UNIT UT (PGF) 7 79 4 INITIAL WATER CONTENT (%) = 153.7 INITIAL SATURATION (%) 4 93.2 INITIAL VOID RATIO 7 4 431 SAMPLE THICKNESS (IN) = 99	
STECIFIC GRAVITY = 2.67 VCC SAMPLE (GM) = 101.01 VOL OF SAMPLE (GC) = 40.49 01A GF SAMPLE (IN) = 2.50	SAMPLE INUNDATED AT 0 KSF SQUARC ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

SECONDARY
48
PRIMARY
CINITIAL.
A REDUCTION
DATA
TEST DATA

	,	SEC	0	0	c	, ,	,		13	m	17	00		. 0		0 1	0 (0	0	0	0		8			000	7 4	,	1117	*	VII.	0	417	1 716	079	1.88	100			
	,	INT	:	:	:	5 :	0	9	8 1	**	2	9			17	:	0	m		9	•			415			1	ï	1	•	7	7	7	**	'	'		'	'	
		ü		0		0	0-	17	9506	CI		9 6	h :	491	4	64	4	20	-	6870	9 2		H	5T7 / KI		•	1	**	36	1 4E	3 35	2 35	1 15	4.85	6.1		1 6			
	SAMPL	L.X																					WEE S	2.40			'	'	'	1	'	F - 4	'	1	'	'		'	'	
	130		: "		•	0	200	-				3	"	٠.	_	2.00	-	000	00.0) î		,	9.	i			eo	24	2.4		9	0		•		, ,	•		7.9	
							**				,	•	er er	0-		6	5	0 12	0 24	2 0		9.	25		TAULT			1.2	0 17	. 7		0					-	0	0	
	DEND		NI		263	272	278	292	147			283		673	663	647	. 627	-0	*		2		,		n					*							n	60		
																							376	,	STRES		c	0		-	,					m	-			
11111		•	2	17.	2698	*	60		7 1	0.45		6.3	6.3	7.4	299	9	429	611		, ,	10	26	· dros	2000	AT10 .	426	**	40	1				;	: :	*	127	100	. 368 .	4	
SEDDOCT TON		0	9	0693	5.5	2710		0 !	9 9	0	10	7.0	5820	17	:				4 .	7	2950	6		SINALIS	ed.	90	3.8				, ,	::	***		2	0.53	4 9	7 53	5.89	
			*		-						***													0																
TEST DATA		STREE	112	93	63				0	9	0	9 6	-			2 "	2			200	69	92		SINZ	TON		0.0	7 4	3 .		0.7	2.5		2 33	4 00	2 00			. 20	

2300 233

7777

4000

4444

4 1 1 1 2

0000

....

7311 * * *

0 0 0 0

				0.7																										
																5.2	10										10			
		0690												477	400 4	374 "	200 4	0.10 × ···	200 W	110 × 1			1222 *					3 521 × 0		
			0 10 10 10 10 10 10 10 10 10 10 10 10 10										 1000000																	
3.358.42 g				000															14	70	19		200						1	
																					10 1	ei i							9	
12.0	1.0		45									00																		

THATHER SHITZET SHIRESHING WAS

PROJECT NAME & NO. ARE CRANEY ISLAND NKS-1175C BORING NUMBER IS B-3 UD-1 SAMPLE IDENTIFICATION IS GRAY SOFT CLAY

85,95	140,75	102.17	3,7194
11	11	II	II
INITIAL WET UNIT WT (PCF) = 85.95	WATER CONTENT (%)	SATURATION (%)	VOID RATIO
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	= 83,10	60.33	= 2.50
	11	11	11
TY	(GM)	000	(IN)
CIFIC GRAVI	SAMPLE WT	OF SAMPLE	DIA OF SAMPLE (IN)
SPE	WET	VOL	DIA

SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

SECONDARY රේ PRIMARY TEST DATA REDUCTION (INITIAL,

×	SEC	15	47	E1	7	11	(U	10	cu	33	15	50	90	σ	90	11	00	w
×	INT	80	0	4	0	23	ou	17	15	4	7	e	65	cu	68	12	83	90
SAMPLE HT	AT DEND	.7437	.7420	. 7368	.7250	. 7032	. 6589	. 5983	.5475	. 4657	. 4687	. 4766	. 4823	9064.	.5008	. 5044	.5103	.5116
190	MIN	8.60	.80	9.50	8.25	8.40	7.75	9.00	8.00	5.50	1.50	4.00	2.00	7.75	6.50	8.75	5.50	2.75
DEND	(IN)	.2780	. 2763	. 2711	. 2593	. 2375	. 1932	.1326	.0818	00000	.0030	.0109	.0166	. 0249	.0351	.0387	.0446	.0459
D 90	(IN)	.2794	.2772	.2726	.2613	.2415	.1984	.1436	.0872	.0329	.0023	.0087	.0153	.0234	.0328	.0380	.0440	.0458
DO	(IN)	. 2839	.2780	.2761	.2711	. 2552	. 2364	. 1835	. 1264	.0796	. 000e	. 0034	.0139	.0168	.0305	.0355	.0432	.0457
STRESS	KSF	0.5	.026	.05	-	.2.	٠.	0	2.0	4.0	2.0	1.0	.5	.2	-	.05	.026	.02

8	640.	.091	. 228		. 685	. 159	.040	. 131	. 053	. 131	. 095	. 119	.170	. 066	. 119	.067
MV FT2/KIP	. 20E+00	.23E+00	.29E+00	.26E+00	.19E+00	. 15E+001. 129	.67E-011.040	.36E-011.131	.17E-02	. 85E-02	.12E-01	.34E-01	.11E+00	.85E-01	.30E+00	.27E+00
PERM Y FT/DAY	.18E-01	.17E-02	. 25E-02	.21E-02	.16E-02	. 94E-03	.45E-03	.32E-03	.57E-04	.11E-03	.31E-03	. 23E-03	. 90E-03	. 52E-03	.30E-02	.535-02
CV FT2/DAY	1.46	. 12	. 14	. 13	. 12	60.	.08	. 10	.37	.14	. 29	90.	60.	.07	. 11	. 23
* AVG *STRESS	0.	0.	1	ei.	4.	8.	1.5	3.0	3.0	1.5	8.	4.	ď.	. 1	0.	0.
4 4 4	•	*	_	*	•	•		~	T	T	Τ.	T	т.		т	T
VOID RATIO	3.674	3.648	3,580	3,458	3, 186	2.846	2, 533	2, 192	2.208	2.248	2.276	2, 324	2,375	2,395	2,429	2,437
STRAIN X	. 12	.67	2, 13	4.73	10,56	17.82		31.79	31.44	30,60	29.99	28.97	27.88	27.45	26.73	26.56
SAMPLE HT IN	.7428	.7387	. 7278	. 7085	. 6652	.6112	. 5614	. 5073	. 5098	.5161	. 5207	. 5282	. 5364	.5396	. 5449	.5462
STRESS KSF	.026	.05		.2	5.	1.0	2.0	4.0	2.0	1.0	.5.	2		.05	.026	.02

LAW ENGINEERING TESTING COMPANY COMPANY COMPANY LOCATION TEST TOTAL

T MAME & NO. ARE CRAMEY WUNDER IS B-3 UD-1

		TIRE OFF JAIT
		TIRE OFF JAIT
		TIRE OFF JAIT
		TIPL VOID RATIO
		TIRE OFF JAIT
		TIRE VOID RATIO
		TIRE VOID RATIO
		TIPL VOID RATIO
		TIAL VOID RATIO = 3.
		TIRE VOID RATIO
		TIAL VOID RATIO = 3.
	TIRL WRITER CONTENT (x) = 140.	TIRL VOID RATIO = 3.71
	TIAL WATER CONTENT (x) = 140.7	TIPL VOID RATIO = 3.719
	TIAL WATER CONTENT (x) = 140.7	TIRL VOID RATIO = 3.71
	TIRL WRITER CONTENT (x) = 140.	TIPL VOID RATIO = 3.719
	TIAL WATER CONTENT (x) = 140.7	TIPL VOID RATIO = 3.719

SAMPLE INUNDATED AT .0 KSF GDHTSK SALT DE TIME METHOD SEUDE BRAINSE RADINSE CORRECTIONS

DO				LIVE.			SEB1.		aero.	. 0008	.0030			SEMO.	
	CMI)	. S184		rg NH	245										8240.
			1175.	E8283		SEE1.	3881.	8180.	.0000	.0020	E010.		TREO.		esko.
DET						7. 75									27.75
	更										BBY.			0	aire.
						01									
													A-12		

						86.73 87.45 87.45 88.85
		B 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200	
			4 * *		2 2 6	
PTS/DA/						
Y FT/2004	10-38!.			0-355 0-376 0-376	0-3E-0	20-300 20-300 20-300 30-300
		SE 10	100+3E1.		0-34	10-328. 00+308. 00+308.
000	180.	000	PS4.			071. 830. 730.

ISLAND NKS-1175C PROJECT NAME & NO. ARE CRANEY ISLAND NK5-117 BORING NUMBER IS B-3 UD-2 SAMPLE IDENTIFICATION IS GRAY SOFT CLAY (CL)

86.30	95. 47	91,53	2.8162
11	11	11	II
WT (PCF)	TENT (%)	(x) N	0
WET UNIT	WATER CON	SATURATIO	INITIAL VOID RATIO = 2.8162
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	83.44	60.33	2.50
11	11	II	II
TY	(BM)	600	CIN
SPECIFIC GRAVITY	SAMPLE WT	VOL OF SAMPLE (CC) = 60.33	OF SAMPLE
SPEC	MET	VOL	DIA

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

SECONDARY) PRIMARY & TEST DATA REDUCTION (INITIAL,

* 1	38	20	9	14	0	0	6-	6	S	19	19	1	15	(U	a	00	53
×	0	47	15	9	4	a	0	25	15	11	7	m	11	56	٣	4	47
SAMPLE HT																	
T90	. 80	1.00	5.20	4.75	5.80	8.85	9.50	6.50	4.00	1.50	2.80	5.90	8, 50	12,30	9.00	10.00	2.75
DEND																	
06 Q	. 2756	.2746	.2714	.2657	. 2515	.2071	. 1241	.0661	.0161	. 0033	.0107	.0217	. 0352	.0452	. 0482	.0561	.0572
DO	.2761	.2749	. 2739	. 2705	. 2635	. 2491	. 2019	. 1091	.0481	+0000	. 0050	.0133	.0244	. 0407	.0460	. 0547	.0571
STRESS	.02	. 020	.05	-1	.2	5.	1.0	2.0	4.0	2.0	1.0	5	.2	! -	.05	.026	.02

8	.028	. 097		. 609	1.044	. 711		. 116		. 174	.115	. 043	. 139	600.
MV FT2/KIP	.14E+00	.18E+00	.19E+00	.21E+00 .609	. B2E-011.044	.28E-01	.24E-02	.91E-02	. 26E-01	.60E-01	.91E-01	.68E-01	.43E+00	.47E-01
PERM / FT/DAY	. 10E-01	.26E-02	. 23E-02	.16E-02	. 64E-03	.33E-03	.79E-04	.16E-03	. 22E-03	.37E-03	.39E-03	.40E-03	. 23E-02	.91E-03
CV FT2/DAY	1.19	. 24	. 19	.11	60.	. 13	. 34	. 19	60.	.07	.05	.07	90.	. 22
* AVG *STRESS	••	* *	a.	4 4	1.5	3.0	3.0	1.5	8.	4.	ď.	1	0.	0.
900	-	N 4	m	0 6		_	T	٠,	_	_	in	m	m	6
VOID	. 810	76	. 69	1. 4 10. 0	69	. 475	. 496	. 533	. SB	. 65	.68	. 69	.738	. 739
STRAIN VOID * RATIO .00 2.813		1.29 2.764	16	9.52 2.450							29.59 1.685	29.25 1.698	28.21 1.73	28.18 1.73
az di	80.	.7398 1.29 2.76	3.16	25	29.38	34.99		33, 59	32, 31	30.49	23	52	21 1.	18 1.

LAW EMBINEERING TESTING COMPAN

M 3 M

ACH ON THE METHOD TO WE ARE ADD TO THE METHOD COURSE DESIGNATED BROWN SHOWS OF THE PROPERTY OF

F. W. * m * m & m & * - a m m & a o o u

SJAMBS MI TH #PAT.							P058.	
	80.					23, 39		
GIOV DITOR	2. 810 SET 193			8	BYA.1	12.00		00000
BREARTS#	* *							
FTS/DB/		, to 4	- 0	80				89.08
	10-301	SAM - O	0-331	0-849	E0-355.			50-304. SO-355.
FISAKIP	00+341.	126		SE-01				10-312. 00+383. 10-374.
8	850.			100				E40.

ISLAND NKS-1175C BORING NUMBER IS B-3 UD-3 SAMPLE IDENTIFICATION IS DARK GRAY SOFT CLAY CRANEY ARE ġ NAME

95.38	76.46	97.52	2,1170
11	11	tl	II
INITIAL WET UNIT WT (PCF) = 95.38	WATER CONTENT (%)	SATURATION (%)	VOID RATIO
2.70	92.25	60.33	2.50
11	11	11	II
SOFFIETE GRAVITY	(MS) TW HIGHOR THE	COO MINING TO TOO	DIA OF SAMPLE (IN) = 2.50

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS PRIMARY & SECONDARY) TEST DATA REDUCTION (INITIAL,

* 0	מבר	20,00	89	53	-	LT?	14	19	9	63	36	38	7	QI I	7	7	m	65
×	INT	0	688	10	76	cu	10	R	10	29	۲٦	18	18	9	82	19	93	47
SAMPLE HT	AT DEND	7647.	.7487	4747.	.7450	.7410	.7112	.6819	. 5494	. 5835	. 5882	. 5942	. 5988	. 5097	.6187	. 6232	.6286	.6289
190	MIN	2, 75	2.75	5,50	2.00	2,30	5.50	7.00	5, 50	4.60	2.00	S 00	4.00	10.00	4.00	13,75	2,75	1.50
DEND	(NI)	. 2495	. 2485	. 2472	2448	.2408	.2110	.1817	1492	. 0833	.0880	0940	. 0986	. 1095	. 1185	.1230	. 1284	.1287
D 90	(IN)	7645	. 2493	2476	5446	2414	. 2175	1846	1501	10801	0860	. 0914	6260	. 1087	.1177	. 1228	.1282	.1286
DO	(NI)	9500	2485	2484	7576	7447	0.000	8106	1700	1210	0534	0887	0948	0993	1166	11194	1279	.1285
STRESS	KSF	00	300	070.	co	-ie	i 14	2	0:0	7.0	,,	1:0			: -	15	026	.02

ELIMINATING SECONDARY TEST DATA REDUCTION FOR PRIMARY & INITIAL,

23			400	. 014	. 033	200	1567	165.	6/4.	969	. 041	.051	600	1116	. 115	690	1/0.	. COB
MV	FIETRIF		. 25E-01	. 55E-01	.63E-01	. 50E-01	.11E+00	. 76E-01	. 46E-01	.34E-01	. 20E-02	. 49E-02	.11E-01		1	.*	•	. 47E-01
	FI/DHY		.67E-03	.74E-03	. 23E-02	:-16E-02	.15E-02	. 73E-03	. 54E-03	.42E-03	. 60E-04	.15E-03	.17E-03	.31E-03	.18E-02	. 58E-03	. 68E-02	. 20E-02
2	FT2/DAY		. 43	8	. 59	51	.20	. 14	:17	.17	.39	.39	. 20	80.	. 21	90.	. 32	. 59
* AVG	*STRESS	*	0. *	0. *	* .1	*	4. *	*	1.5	* 3.0	* 3.0	* 1.5	*	*	· ·	*	0. *	0. *
VOID	RATIO	2,116	2,115	2, 111	2, 101	2.086	1.979	1.862	1.717	1.508	1.520	1.536	1.553	1.600	1.634	1.654	1.675	1.676
STRAIN	×	00.	.01	. 15	. 46	. 96	4.38	8, 15	12.78	19.51	19, 11	18.62	18.05	16.56	15.45	14.83	14.13	14.10
SAMPLE	HT IN	7497	7496	7486	. 7462	7424	.7168	. 6885	. 6538	. 6034	. 6064	.6101	.6143	6255	. 6338	. 6385	. 6437	.6439
STRESS	KSF		900	050.			in	10	200	4:0	200	0.1			! -	10.	.026	.02

MAGNOS EMITEBI ENIGBEMIENS MAS AREA MAS AND MA

PROJECT NAME & NO. ARE CRAME SAMING MUMPER IS 8-3 UD-3 SAMPLE IDENTIFICATION IS DAR

ACHTER THE METHORNINI ELANDS
SERVICE SERVICES
SE

90													1	
				Sees.	ayas.									
											3890.			188
							5.30							ELI.
	TMI		podd .	1 1										
		W.		1 0	n		47							

			7.7														
																* .0	
		. 433	. 55	. 22	13.			41.5						18.		. 35	
	F-17 1 12									0E-0					. SBE-03	S0-388.	. 20E-08
VM		TO-BES.		3E-0		+311F+			0-34E.		E4.	· 11E-0	. BOE-0	11.	* 18E+	. 53	10-37A.
			0	. 00		4 550	. 33		ea.	40.	. 02		- 1	- 17			

& NO. ARE CRANEY ISLAND NKS-1175C IDENTIFICATION IS DARK GRAY SOFT CLAY NUMBER IS B-4 UD-1 PROJECT NAME BORING

47.58 1.2447 110.77 WATER CONTENT (X) (PCF) SATURATION (X) LNIT MT VOID RATIO WET INITIAL INITIAL INITIAL INITIAL = 2.50 = 107.10 = 60.33 = 2.50 SPECIFIC GRAVITY
WET SAMPLE WI (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

*	SEC	(3)	62	ea	7	ņ	-	-1	P	m	9	9	9	ıc	25	48	0	14
×	INT	0	0	36	cu	0	37	50	111	14	64	533	54	σ	41	31-	6	78
SAMPLE HT	AT DEND	7497	4644.	.7458	.7380	. 7254	.6991	.6792	.6542	.6265	. 6275	.6291	. 6313	.6357	.6377	.6402	.6413	.6419
T90	NIE	1.50	1.75	.50	9.60	2.00	8.00	4.50	3.50	2.80	1.00	1.00	1.50	3.00	1.40	2.00	2.80	1.25
DEND	(IN)	.2495	. 2492	.2456	. 2378	. 2252	. 1989	.1750	.1540	. 1263	. 1273	. 1289	. 1311	.1355	.1375	.1400	. 1411	.1417
D 90	(IN)	.2497	.2494	.2457	. 2383	. 2258	.2008	. 1803	. 1550	. 1295	. 1272	. 1287	. 1308	. 1349	. 1364	. 1387	.1410	.1416
DO	(IN)	. 2500	. 2495	. 2458	. 2454	. 2378	. 2155	. 1948	. 1760	.1500	. 1269	.1278	.1294	.1315	. 1359	.1379	. 1401	.1415
STRESS	KSF	0.5	026	0.05			i re	10	200	0.4	2.0	1.0	.5	.2		.05	.026	.02

100.40 4

2			.003	.037	.080	. 133	. 196	. 201	. 262	. 266	600.	. 015	.050	.031	.010	.013	.012	.013	
M	FT2/KIP		. 25E-01	. 20E+00	. 22E+00	.18E+00	.12E+00	.54E-01	.35E-01	.18E-01	.62E-03	. 20E-02	. 55E-02	.19E-01	. 13E-01	.34E-01	. 61E-01	.11E+00	
	/ FT/DAY		.10E-02	.29E-01	.16E-02	. 185-02	. 99E-03	. BOE-03	.64E-03	.39E-03	.39E-04	. 12E-03	. 23E-03	.39E-03	. 57E-03	.11E-02	.14E-02	.58E-02	
2	FT2/DAY		. 68	2,36	. 12	. 16	. 13	. 22	.26	.30	. 83	. 84	. 56	. 28	.61	. 43	.31	. 69	
* AVG	STRESS		0.	0.	. 1	ď.	4	8	1.5	3.0	3.0	1.5		4. *	· ·	* .1	0.	0.	
	_	_	~	~	_	Ť		_	A1	_	T	•	10	+	_	.+	+	•	
VOID	RATIO	1.244	1.243	1.233	1.209	1.169	1.091	1.030	. 952	. 871	.874	. 87	. 885	. 897	. 900	. 904	. 907	. 909	
STRAIN	×	00.	.01	. 48	1.56	3.34	6.81	9.51	13.02	16,59	16.47	16.27	16.00	15.44	15,31	15,14	14,99	14.92	
SAMPLE	HT IN	7497	.7496	.7460	.7380	.7246	. 6986	.6784	.6520	.6253	.6262	.6277	.6298	. 6339	. 6349	. 6362	. 6373	.6378	
STRESS	KSF	.02	026	.05	-		5	0	2.0	0	2.0	1.0	5.	.2	-	.05	.026	.02	

	To				
	**				
	101				
	76				
			07.		0]
					- 0
				por.	
					1-1
	100				
	9				
die					
					0
					0 0
					0 0 1
					S.1 a
					S.1 a
		.011 = (909).	ENT (N) = 47.	EN (%) = 103.	AS.1 = 0
		.011 = (909).	ENT (N) = 47.	EN (%) = 103.	AS.1 = 0
		C.011 = (909).	ENT (N) = 47.	S.Ed. = 103.8	A48,1 = 0
		C.011 = (909).	ENT (N) = 47.	EN (%) = 103.	AS.1 = 0
		.011 = (909).		S.Ed. = 103.8	A48,1 = 0

	(191)	. 2500													. EBE1.	EEE		CIAI.
		TEAS.												70-9 10-3		51.	0141.	
DEMD	CMID	40	SEAS.	acas.			6861.					essi.			STEL.	0041.	Lini.	T241.
	MIM	02.1	27.75	. E0	9.60	7,00		4, 50		08.5	1.00	1.00	1.30	3' 00			80 .8	1.82
			ABAT.							Casa.								Elta.
x	TMI				61	0		80	11						1.0	37		78
×	338	132			+3	+10							m			84		17.4

													VYSB.						
		×	.00												15.44	12.31	41,81	0.7	
			445.1	5.4S.1												. 900	woe.		
				* .0		* * 7			. 6				- 7	8 . 8		00.00	* " "	. 0	.0
													48.						E9,
-	MEMBA					- 100-00t												SO-BAI.	. 58E-08
	N.				.205+00	00+355	. 18E+00	00+381.		10-BEE.		. BBE-03	SOE-08			13E-01	4	10-318.	. IIE+00
-						. 080			108	388.	388.	B00.		. 050	150.	oro.	.013	510.	

PROJECT NAME & NO. ARE CRANEY ISLAND NK5-1175C BORING NUMBER IS B-4 UD-2 SAMPLE IDENTIFICATION IS BLACK TO GRAY SOFT CLAY CRANEY ISLAND NKS-1175C

96.24	59.84	83,85	1.7983
11	11	11	11
. WET UNIT WT (PCF)	. WATER CONTENT (%)	INITIAL SATURATION (%) = 89.85	. VOID RATIO
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	93.05	60.33	2.50
11	11	II	11
TY	(GM)	(00)	(III)
SPECIFIC GRAVITY	SAMPLE WT	VOL OF SAMPLE (CC) = 60.33	OF SAMPLE
SPE	MET	VOL	DIG

SAMPLE INUNDATED AT . 0 KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS PRIMARY & SECONDARY) TEST DATA REDUCTION (INITIAL,

x 7 4 4 1 1 4 2 2 2 2 2 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5	31
* NI 0 0 8 8 2 4 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9	98
SAMPLE HT AT DEND .7496 .7466 .7388 .7288 .6857 .6477 .6477 .5637 .5637 .5646 .5717 .5656	.5972
7.75 7.75 7.75 7.75 7.75 7.75 7.75 8.75 8	i. 00
DEND (IN) .2496 .2494 .2386 .2386 .1475 .1089 .0635 .0715 .0715 .0715	. 0959
D 90 (IN) .2498 .2495 .2468 .2468 .1884 .1510 .1510 .0560 .0685 .0685 .0898 .0898	. 0937
DD (IN) .2500 .2496 .2472 .2462 .2462 .2072 .1741 .1450 .1650 .0638 .0674 .0723	.0933
STRESS KSF .02 .026 .05 .1 .5 .1.0 2.0 4.0 2.0 1.0 .5	.02

ELIMINATING SECONDARY TEST DATA REDUCTION FOR PRIMARY & INITIAL,

2			· 000	. 035	640.	. 191	.340	. 459	. 506	. 521	.034	.061	.087	. 104	.011	.012	900.	. 025
M	FT2/KIP		.25E-01	.15E+00	.11E+00	.21E+00	.16E+00	. 99E-01	.54E-01	.30E-01	.18E-02	. 65E-02	.19E-01	.50E-01	.12E-01	.26E-01	.25E-01	.17E+00
PERM			.10E-02	.14E-01	.24E-02	. 23E-02	.11E-02	.81E-03	.48E-03	.28E-03	. 52E-04	.12E-03	. 23E-03	.34E-03	.46E-03	.10E-02	.15E-02	. 50E-02
2	FT2/DAY		.68	1.58	.36	.17	.10	. 12	. 12	. 12	.35	. 22	. 15	60.	. 50	. 50	.76	.38
H AVG	*STRESS		0.	0. 4	. 1	ei.	4.	8.	1.5	3.0	3.0	1.5	8.	4. 4	a.	. 1	0.	0.
*		*	*	*	*	*	*	*	*	*	*	_	~	*	~		m.	*
VOID	RATIO	1.797	1.797	787	772	715	1.579	1,441	289	1.123	133	151	178	219	222	525	858	530
z		•	Ħ	4	H	;	4	1,	1.	;	;	-	;	1:	+	-	÷	ri.
STRAIN	×	.00	.01	.37 1.	.90 1.	2,95 1.	13	12.74 1.	8 1.	1	LO.		+	20.67 1.	20.56 1.	20.43 1.	20.37 1.	20.27 1.
SAMPLE STRAI	HT IN X	. 7498 .00		.7470 .37 1.	.7430 .90 1.	95	13	42	18.18 1.	.5690 24.11 1.	LO.	23.10	22, 16 1.	-;		S0.	.5971 20.37 1.	

LAN ENGINEERING TESTING COMPANY CONSCILORITISM TEST DATA

A 8 SMGM TOSLOGG BI REGINAL SMIROR SITINED SIGNAR

ABM O. TA DETACMUNI BLAGMAR DONTEN BRAINGE BARNING ENDITCHE BRAINGE BROITCHE BRAINGE BROITCHE BRAINGE BRAINGE

110											i				
	0088.							.1080					TEO.		
										erro.					
														50	
			. 75			7, 75	6.80						02.1	00 .1	8.00
DEMO TA		SEAT.											SEEC.		
TMI					45					11		53	50		
					01										

					ni ci		
							1788. 8786.
	o a					00	
787.1					871.1		
		* *			* 0		
83.							97.
30-301.				. 18E-03			. 15E-02
10-385.			30E-0	SO-358.	10-30I.		10-38S.
					780.		300°.

CRANEY ISLAND NK5-1175C (CH CLAY PROJECT NAME & NO. ARE CRANEY ISLAND BORING NUMBER IS B-4 UD-3 SAMPLE IDENTIFICATION IS BLACK SOFT

91.18	80,85	93.22	= 2.3417
11	11	11	11
WET UNIT WT (PCF)	WATER CONTENT (%)	INITIAL SATURATION (%) = 93.22	INITIAL VOID RATIO
INITIAL	INITIAL	INITIAL	INITIAL
= 2.70	88.16	60.33	2.50
11	11	II	11
_	(GMS)	(00)	(II)
SPECIFIC GRAVITY	WET SAMPLE WT	VOL OF SAMPLE	DIA OF SAMPLE (IN) = 2.50

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS PRIMARY & SECONDARY) (INITIAL, TEST DATA REDUCTION

SEC 47 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	!
NI 10 6 0 4 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;
SAMPLE HT AT DEND .7416 .7411 .7385 .7385 .7385 .6949 .6469 .6469 .6469 .5473 .5473 .5586 .5586 .5686 .5686 .5885	
OFF R. 13 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2
DEND (IN) 2417 2412 2386 2336 2330 1950 1470 1470 1005 0512 0512 0557 0557 0687	
0 90 (IN) 2424 2414 2406 2312 2240 1960 1080 0535 0535 0543 0736 0736	2000
000 8415 8415 8411 8378 8378 1945 1945 0745 0566 0640 0640	1000
STRESS KSF .02 .026 .05 .1 .5 .1 .0 2.0 4.0 2.0 2.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0	30.

2			.012	.010	.120	. 115	. 331	. 698	. 641	.736	.051	.051	. 086	. 134	.005	900.	.005	.013
MC	FT2/KIP		. 70E-01	.37E-01	.22E+00	. 10E+00	. 13E+00	.13E+00	.58E-01	.34E-01	. 23E-02	.46E-02	.16E-01	.54E-01	. 42E-02	.11E-01	.18E-01	.72E-01
PERM	FT/DAY		.34E-02	. 27E-02	.24E-02	. 27E-02	.18E-02	.13E-02	.71E-03	.44E-03	.64E-04	.16E-03	.34E-03	.45E-03	. 22E-04	.84E-03	.21E-02	. 26E-02
20	FT2/DAY		.78	1.16	.18	04.	.21	. 15	.17	.16	. 33	. 42	.26	.10	.07	. 95	1.43	. 45
F AVG	FSTRESS		0.	0.	. 1	a.	4.	8.	1.5	3.0	3.0	1.5	9.	4.	ď.		0.	۰.
VOID +	RATIO +	2.304	2,303	2,300	2,264	2.229	2.097	1.887	1.694	1.473	1.488	1.503 +	1.529	1.582	1.584	1,585	1.587	1.588
STRAIN	×	00.	.04	. 13	1.23	2,28	6.26	12,62	18.46	25, 17	24.70	24.24	23.46	21.85	21.80	21.75	21.71	21.66
SAMPLE	HT IN	.7416	. 7412	.7406	. 7325	7247	. 6951	.6480	. 6046	. 5549	. 5584	.5618	.5676	.5796	. 5799	. 5803	. 5806	. 5809
STRESS																		

PAPE 21

LAV EMGINLENING TESTING COMPANY CONSOCIDATION FEST DATA

FINE THACE PROJECT HAME & MO. AME NES-1175 CRANEY ISCAND SOCIED BAFFLE IDENTIFICATION IS SOFT DARK GRAY CLAY.

SAND

SPECIFIC GRAVITY	2 64	6.4	INITIAL VET UNIT VT (PCF)
UET SAMPLE UT (CM) - 104 44	104	46	INITIAL VATER CONTENT (%)
VOL OF SAMPLE (CC)	,	80.44	INITIAL SATURATION (%)
DIA OF SAMPLE CIND a		2.50	INITIAL VOID RATIO
			SAMPLE THICKNESS (IN)
SAHPLE INUNDATED AF . 0 KSF	0. 1	KSF	
SOURCE ROOT OF TIME METHUD	HTTH 3	90	
DOUBLE DRAINAGE			
NO STONE CORRECTIONS	KS		

.

FEST DATA RESUCTION CINITIAL. PRIMARY & SECONDARY.

ar i	o us,	0	0	9	13 0		110	0	-1	0	100	1	0	0	0	0	c	0	25			004	026	10		64	1.182		. 22	m	64	g-	64	
•	1	:	:	4.4	10 17	;	2.4	49"	**	**		91	0	0	0	0	0	69		41		61	2-5	-1	7	7	7	1-	-5	7	7	-5	-2	
																			5:	TLIK		9	<u></u>		60	ta)	139	(a)	119	1	w	4	35	
-1	CNGC	6666	9.	9981	9920	9803	9321	9		6143	6165	6.1	6383	41	9.	6901	60	0		Los		**	•	++	••	-		-	17	1	80	*	40	
SAMP	AT																		1;	AY		"	-	"		+	+	4	7		"	57	"	
0	IM	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	64 04	ET/DA		;;	(r)	ü	1/2	100	4	43	4	43	42	7.5	61.9	
13	Ξ	1.0				1	9		ó	-		-0		50	0	0	0	o				**	64							**	*	177	**	
						-		.,		4			*	-	**	77	43	"		T.2 / DAY		-	173	۴,	0		-		0		-	0	0	
DENO	Ξ	57	2673	6.0	7.5	8.6	3350	1,7	9	67	8	17	19	0.8	9.7	77	0	67	ű	111		64		-										
		-1					**	**							3			61	AVG	STREES		0	0	1	64	4			3 0			100	+	
On .	2,	6.7	6.3	93	7.1	87	327	9	5	4	8	C)		O	60		.0	6.7			. 0		*			* 9		*			4	*	*	
0		.,		.,			1.8	,			-0		-	"	"				0	815	50	0.1	64	0-	17	6.3	5 8	4	99		0	7.6	90	
																				e	m	173	"	**	m	m	14	**		**	**		**	
3	7	1	63	0	7	29	2976	60	20	7	5	0.	7	61	0.8	97	17	6.	STRAIN		0.0	9.1	1.8	2.8	0.	2	0 0	.,	'n	60	7 4	31 92		
.,																			55											-				
STRE	C	69	0.3	69	0	2.0	50	12		4 35	123	. 90	20		. 0	0	9	6.5	21.12	10	0.2					in	0	0	0	2 00	0	S	52	

164 291 122 076

7777

9979

0000

0 0 0 0

901 908 023 031

9 9 9 9

AN CONTRACTOR CONTRACTOR VALUE

	77			

													;								
	61																				
													×		*	٠	¥				
		44																			
	w																				
																		-1	i.		
														٠,							
																				**	
																				3.4	
					-																
																			-1		

TO BLACK SANDY SOFT CLAY PROJECT NAME & NO. ARE CRANEY ISLAND NK5-1175C BORING NUMBER IS B-5 UD-2 SAMPLE IDENTIFICATION IS GRAY

72.69 117.38 1.4787 WET UNIT WT (PCF) WATER CONTENT (%) SATURATION (%) VOID RATIO INITIAL INITIAL INITIAL INITIAL 2.70 113.49 e 50 60,33 11 11 11 (CC) (II) SPECIFIC GRAVITY WET SAMPLE WT (GN VOL OF SAMPLE (CC SAMPLE DIA OF 성

SAMPLE INUNDATED AT . O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

×	SEC	16	19	13	81	36	133	18	9	7	g	13	4	17	19	I	17	74
71	INT	0	31	53	45	34	50	48	100	28	64	64	61	64	69	37	72	0
TH R IGMOS	AT DEND	7697.	.7493	.7488	.7473	. 7441	.7377	.7306	.7228	.7134	.7138	.7149	.7161	.7176	. 7185	.7191	.7196	.7200
190	NIE	1.00	2.00	1.50	1.50	.75	1.00	1.00	.75	.80	1.00	06.	.75	.75	.75	1.00	1.75	2.00
DEND	(IN)	.2496	. 2492	.2487	.2472	.2440	. 2376	. 2305	. 2227	.2133	.2137	.2148	.2160	.2175	.2184	.2190	.2195	.2199
0	CAL	.2497	. 2493	. 2488	.2476	. 2453	. 2387	. 2321	. 2276	.2144	.2136	.2146	.2159	.2172	. 2182	.2189	.2194	.2157
2	OG C	. 2500	. 2495	.2491	. 2482	. 2465	. 2409	. 2348	. 2276	.2176	. 2135	.2143	.2155	.2168	.2180	.2186	.2193	.2195
00000	ממקא במ	05	0.56	.05	-	.5:	, ru	10	2.0	4.0	2.0	1.0	5.	.2	1	.05	.026	.02

ELIMINATING SECONDARY INITIAL, ob TEST DATA REDUCTION FOR PRIMARY

			600.	.005	.013	. 022	.046	. 064	. 032	. 095	. 003	.010	.013	.010	.008	900.	.005	900.
MC	FT2/KIP		.72E-01	. 24E-01	.31E-01	. 27E-01	. 25E-01	.15E-01	.39E-02	.585-02	.21E-03	. 12E-02	.31E-02	. 556-02	. 96E-02	.14E-01	.23E-01	.49E-01
PERM	1		.27E-02	.12E-02	.156-02	.27E-02	.18E-02	.11E-02	.37E-03	.51E-03	.15E-04	. 99E-04	.29E-03	. 53E-03	.93E-03	.10E-02	.94E-03	.18E-02
2	FT2/DAY		.60	. 79	.79	1.57	1.16	1:14	1.51	1.39	1.11	1.23	1.49	1.49	1.49	1.12	.64	. 56
+ AVG	*STRESS		0.	0.	. 1	ď.	4	8.	1.5	3.0	0.0	1.5	8.	4.	œ.		0.	0. *
*		*	*	*	*	*	7			-	+					-		_
 VOID	H	₹78	17	1	171	ě	446	5	117	385	39	39	397	9	0	405	406	407
5	RATIO	1.478	1.	1.4	1.	1.465	1.446	1.427	1.417	1.389	1.390	-	1.397	1.401	1.403	1:	1:	1.
z																		
AI		8	9	9	85	53	27	04	43	58	iç.	42	26	10	8	93	2.88	85
STRAIN	34			ľ			+	ai	ai	m	m	m	m	m	m	αi	αi	d
Ш	Z	7	m	6	1	7	œ	4	ı	8	-	-	QJ.	4	QI.	7	-	m
d	H	7497	7493	7489	7477	7457	7402	7344	.7315	Š	23	. 7241	S	7264	.7272	7277	7281	7283
SAMPLE	Ħ	.7	.7	7	. 7												. 7	-
STRESS	KSF	.02	026	0.5		. 2.			2.0	0.4	2.0	1.0	2.			0,5	.026	.02

LAW ENBINEERING TESTING CONFIDENCE WAS TEST DETR

NAME A TANKE DE NA

SE.08 = (D1) BAGHRS OF LOOK SE.08 OF SAGRES OF

NO STONE CORRECTIONS

						448T.										
						8.04					- 9	- 7				
OIDV			4			TSA.1	44	38								
	BBBRT8*	* .0		,												
			sit		-											
			0-361					0-31	AN H.S							
W.	FTS/KIP		0-38			10-981.								10-341.		16-36 A
000		8000	2005		SAO.	+30 ·	SEO.		200.	010	210.	010	800.	900.	E00.	300.

CONSOLIDATION TEST DATA

ISLAND NKS-1175C SOFT CLAY PROJECT NAME & NO. ARE CRANEY BORING NUMBER IS B-S UD-3 SAMPLE IDENTIFICATION IS GRAY NUMBER IS B-5 UD-3

88.54 69.91 84.53 2.2331 11 11 WATER CONTENT (%) WET UNIT WT (PCF) SATURATION (X) VOID RATIO INITIAL INITIAL 2.70 85.61 60.33 2.50 11 II (00) (GM) (II) SPECIFIC GRAVITY SAMPLE WT OF SAMPLE SAMPLE DIA OF WET VOL

SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS

SECONDARY) TEST DATA REDUCTION (INITIAL, PRIMARY &

X 33 4 4 4 5 1 1 4 4 7 4 4 5 1 1 4 4 4 5 1 1 4 4 4 5 1 1 4 4 4 4
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAMPLE HT AT DEND .7480 .7427 .7427 .7349 .7076 .6451 .5952 .4597 .5007 .5063 .5149 .5212 .5331 .5331 .5333
PE 94.91.94.99.99.99.99.99.99.99.99.99.99.99.99.
DEND (IN) 2883 2875 2830 2752 2752 2752 0000 0410 0410 0415 0734 0734 0815
D 90 (IN) .2885 .2885 .2876 .2846 .2771 .2771 .2771 .0065 .0405 .0456 .0551 .0557 .0727 .0727
00 2894 2882 28875 2858 2858 2458 2458 0705 0479 0555 0623 0737
STRESS KSF .02 .026 .05 .1 .2 .5 .1 .0 2.0 4.0 2.0 4.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3

ELIMINATING SECONDARY & INITIAL, DATA REDUCTION FOR PRIMARY TEST

2			689	.019	. 023	.093	. 291	. 982	. 477	646.	. 584	.073	. 133	. 054	.177	.012	.016	.012
M	FT2/KIP		.17E+00	.68E-01	.44E-01	.87E-01	.12E+00	.18E+00	.45E-01	.91E-011.949	.27E-01	.68E-02	.25E-01	. 22E-01	.17E+00	. 23E-01	.57E-01	.69E-01
PERM	FT/DAY		. 40E-02	.25E-02	.32E-02	.25E-02	.19E-02	.53E-02	.11E-02	.85E-03	.96E-03	.16E-03	.25E-03	.47E-03	.95E-03	. 83E-03	.41E-02	. 50E-02
2	FT2/DAY		. 38	. 59	1.18	. 46	. 25	. 42	35		.37			. 24	20.	. 42	.85	. 85
* AVG	*STRESS	*	0.	0.	* .1	· *	4.		1:0	· 3.0	3.0	1.5	. 8	4.	· .	* .1	0. *	0.
VOID	RATIO	2, 224	2, 221	2,216	2.209	2, 181	2,065	1.770	1.626	1.039	1.215	1.237	1.277	1,298	1.352	1,355	1,360	1.361
STRAIN	×	00.	. 10	.27	. 48	1,35	4.94	14.10	18.56	35.76	31,30	30,62	29.38	28.72	27.06	26,95	26.81	26.77
SAMPLE	H IN	.7480	.7472	.7460	7444	.7379	.7110	. 6425	. 6092	4731	. 5139	.5189	. 5282	5332	5456	. 5464	. 5474	.5477
STRESS	KSF	.02	920	0.5	1	.5	'n	10	2.0	4.0	2.0	1.0	.5	2		:05	.026	.02

AND EMBINEERING TESTING OFFI COMPOUNT TEST NOT TO THE TEST NOT THE

A SMAN TO RESERVE BENTIED

SANDLE INUMBATED AT . O KAP ADDIANE ROOT OF TIME METHOD BOUGHE DAMINAGE NO STONE CORRECTIONS

							BSYS.		4281.							1010		2080
		988.	185,			779.					040	SAO.		. OEB				080
		2883.	GY88.		0285.								9880.				2080.	E180.
Tao					- 1						- 7			8.50	9° 20	1.50	. 75	. YS
			STAT.				ayov.	1540.	. 2958	TEBA.	.5007	EBOE.	EALE.			. 5383	0048.	SIAZ.
	TMI																	
	BEC			175		0.1	14								13	83	PE	47

									S803.										
		.00	or.			58.1		14.10										26, 77	
			2, 221						358.1										
			.0		* "		* . 4		11			# 172	* "0			* " "	.00	.0	
			88.			ak.					128.	78.	II.	.54			38.	. SS .	
	YARATT		SO-304.					. 53E-05	S0-311.			EO-HBI.	E0-328.	20-37A.	. 95E-03	.83E-03	SO-BIP.	. 50E-08	
					10-349.				10-35¢.			S0-388.	10-32S.	10-3SS.	.17E+00	10-355.	10-372.	10-369,	
200			. 089	B10.		EBO.	188 .			E.S.		EYO.	.133		171:	Sio.	B10.	SIO.	

SOFT CLAY TO BLACK ARE CRANEY ISLAND SAMPLE IDENTIFICATION IS GRAY PROJECT NAME & NO. ARE CR/ BORING NUMBER IS B-6 UD-1

79.46 94.48 4.3412 151.91 WET UNIT WT (PCF) 8 SATURATION (X) WATER CONTENT VOID RATIO INITIAL INITIAL INITIAL INITIAL 2.70 76.83 60.33 SPECIFIC GRAVITY
WET SAMPLE WI (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SAMPLE INUNDATED AT .0 KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

×	SEC	68	19	4	9	7	a	q	4-	+	cu	9	-	*	**	4-	84	23
×	INI	16	31	90	00	10	บว	9	7	37	0	-46	***	7	13	00	10	47
SAMPLE HT	AT DEND	.7488	.7480	.7455	.7407	.7248	.6580	.5790	. 5068	.4410	. 4452	. 4537	. 4625	4444	44784	. 4903	4464.	. 4953
T90	MIN	1.40	1.75	2.80	2, 15	2.90	4.50	4.75	4.50	4.00	1.30	2.80	1.25	5.50	4.00	9.40	S. 00	1.40
DEND	(NI)	.3078	.3070	.3045	. 2997	. 2838	.2170	.1380	.0658	00000	. 0042	.0127	.0215	.0334	.0374	.0493	.0534	. 0543
D 90	(IN)	. 3084	.3072	.3048	.3004	. 2863	. 2245	. 1435	. 0695	.0014	.0037	.0119	. 0205	. 0335	.0375	.0487	.0499	.0538
00	(IN)	.3053	.3076	.3065	. 3041	.2981	. 2799	.2115	. 1325	.0400	.0000	00000	.0128	. 0225	.0340	. 0385	.0494	.0536
STRESS	KSF	.02	026	0.05	-		L.	0	2:0	0:4	2.0	1.0	.5	.2	-	.05	.026	.02

ELIMINATING SECONDARY INITIAL, იხ REDUCTION FOR PRIMARY TEST DATA

8	040	.107	171	.786	.097	213	. 237	. 294	.026
MV FT2/KIP	.14E+00	.12E+00	. 29E+001.171	. 10E+001.785	.46E-011.625 .27E-02 .097		.59E-01	. 60E-01	.36E-01
PERM FT/DAY	.61E-02	.41E-02	.41E-02	.116-02	.47E-03	. 19E-03	.84E-03	.71E-03	.33E-02
CV FT2/DAY	. 68	394	19.	1.15	.32	. 15	8.0.	. 12	.38
* AVG *STRESS	0.0	- 0	4.0		000	1.5	0. 4.	0 -	
	0 -	0.4		o r	4 M	-	ው io	10 4	- 00
VOID RATIO	4.328	4.279	3.70	3.13 2.59	2, 133	2.19	9. 95 9. 95	2.385	2.478
STRAIN X 00.	.09		17:	32.62	62 50		38.89	25.8	
SAMPLE HT IN	7482	7413	. 6611	.5800	.4358	.4490	. 4576	4753	. 4889
STRESS KSF .02	.026	i i.	iri	2.0	0.6	1.0	2.	-;-d	.026

MAGMOS BUITEST ENTREMENTS WAS ATTENDED AND ATTENDED ATTENDED AND ATTENDED A

DIECT NAME & NO. A-8 B-8 B RECHURCH BATTE

SAMPLE INUNDSTED AT . O KSP CONTEM SMIT TO TOOR SAGUED SAMINE DANIES SMITS ON SAMINES ON

				1AOE.					.0000		8810.	8880	.0240.	.0382		
		STOE.	. 30 +B	400E.						erto.	3050.		erso.	VBPO.	ESAO.	
								.0000	Seco.	TS10.		4550.		SEAO.	AEEO.	
		1, 75					す。レコ		1.30				P. 00	9,40	5.00	
	BBAT.	OBAT.		YOAK.	BAST.			Olda.	SCAA.	VESH,	CSSA.		4874.	. A903	AABA.	SZEA.
															Si	
	ess					01										

							, A358	0000						
MIMBTE							PY . 14							
					3, 131	100							45	
			*		* .00				7				.0	
							111	w						38.
	Y FINDRY									E0-348.	: 50E-03	S0-371.	E0-388.	S0-355.
		OO+341.						SO-BYS.		10-388.	10-365.		-133	IO-BAR.
00			010						51	. 50	613		10.	

(GL) SOFT CLAY ARE CRANEY ISLAND NKS-1175C TO BLACK IDENTIFICATION IS GRAY PROJECT NAME & NO. ARE CR/ BORING NUMBER IS B-6 UD-2 SAMPLE 83.28 136.25 97.33 3.7796 8 WET UNIT WT (PCF) SATURATION (X) WATER CONTENT VOID RATIO INITIAL INITIAL INITIAL INITIAL 2.70 80.52 60.33 S. 50 11 11 11 11 SPECIFIC GRAVITY
WET SAMPLE WI (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

×	SEC		0	14	P	9	4	3	l)	m	63	9	0	*	5	*	t9	*
×	INT	0	99	16	0	11	1	36	10	60	Ð	13	w	1	-	0	47.	0
SAMPLE HT	AT DEND	.7194	.7012	.6998	. 6869	6099.	.6185	.5875	. 5326	. 4735	.4750	.4815	4884	. 4977	. 5057	.5086	.5092	. 5094
T90	MIN	10.50	1.40	2.80	9.90	10.25	5.80	4.00	5.00	4.40	1.00	2.00	4.50	5.85	9.75	11.00	1.00	.70
DEND	(NI)	. 2459	. 2277	. 2263	.2134	.1874	.1450	.1140	.0591	. 0000	.0025	.0080	.0159	.0242	.0322	.0351	.0357	.0359
D 90	(IN)	.2467	. 2278	. 2266	.2140	. 1882	.1510	.1140	.0614	4200.	.0015	. 0072	.0152	.0242	.0318	.0351	. 0353	. 0357
DO	(IN)	.2742	. 2279	. 2275	. 2262	.2101	. 1866	. 1322	. 1082	.0542	. 0001	- 0032	. 0085	.0160	. 0243	. 0322	. 0352	.0357
STRESS	KSF	.02	026	0.05	-	.2.	LC.	10	2.0	4.0	2.0	1.0	5.	.2	1	.05	.026	.02

ELIMINATING SECONDARY INITIAL, ö TEST DATA REDUCTION FOR PRIMARY

2			.013	.027	.289	. 585	.646	.693	. 554	. 205	.035	. 109	. 168	. 148	. 179	.068	.005	.000
MC	FT2/KIP		.42E+011	.69E-01	.38E+00	.38E+00	. 19E+00	.92E-01	.80E-011.224	.40E-011.205	.12E-02	.72E-02	. 22E-01	.43E-01	.12E+00	. 90E-01	, 12E-01	· 00E+00
PERM	/ FT/DAY		. 20E+00	.17E-02	. 25E-02	. 23E-02	. 19E-02	.13E-02	.78E-03	.39E-03	. 52E-04	.16E-03	. 23E-03	.386-03	. 58E-03	.39E-03	. 59E-03	. OOE+OO
20	FT2/DAY		+7.	.37	. 10	60.	. 14	.18	.12	.11	74.	.24	.11	.10	.05	. 05	.54	. 78
* AVG	*STRESS	*	0.	0.	* .1	· ·	4.	. 8	1.5	o.e. *	0.0	* 1.5		4.	· *	* *	0. *	0. *
VOID	RATIO	3.585	3,469	3.462	3,375	3, 199	2.941	2.731	2,363	2,000	2.011	2.043	2.094	2, 153	2.206	2.227	2,228	2.228
STRAIN	×	00.	2, 52	2,68	4.58	.8.45	14.03	18.62	26.66	34.57	34.34	33.62	32, 52	31.24	30.06	29.65	29.59	29.59
SAMPLE	HT IN	.7194	. 7013	.7001	. 6865	. 6588	.6185	. 5855	. 5277	. 4708	4724	4776	. 4855	4947	. 5032	. 5064	. 5066	. 5066
STRESS	KSF	-02	026	0.5	-	2		10	2.0	4.0	2.0	1.0	5.	.2	1	.05	.026	.02

										0				90		
MI TH						Edac.		80T#.	45784	STTA.	. 4822					
												31.24			29.59	
DITAR									2,011					8, 227	8.88	
	. 0	.0	张 "一	101							* .00					
YAGVSTA				. 08	. 74		. 75									
	. SOE+00			- 538-05						. 16E-03	387		E0-38E.			
	+14	10-383.		- 38E - 00	. 19E+00			110-304.			. SSE-01		. 12E+00		ISE-OI	NO. TOWN
				Eec.			A885.		850.	eor.	881.	841.	ETI.	830.	200	

10 1												.0328	10	TREO.
				0415.									.0323	
DEMD							0411.		.0058					. 0223
Tao	-	04.1			10,23	5, 80			00.1				00.1	07.
TH SIGNAGE TO				6888.	eosa.				. AYEO					
			91								-			
					in the									

9 TO BLACK SOFT CLAY ARE CRANEY ISLAND NK5-1175C IDENTIFICATION IS GRAY IS B-6 UD-3 PROJECT NAME & NO. BORING NUMBER SAMPLE 83.19 121.25 94.04 3,4811 UNIT WT (PCF) WATER CONTENT (X) SATURATION (%) VOID RATIO INITIAL INITIAL INITIAL 2.70 80.43 60.33 2.50 11 11 11 11 SPECIFIC GRAVITY
WET SAMPLE WT (GM) =
VOL OF SAMPLE (CC) =
DIA OF SAMPLE (IN) =

SAMPLE INUNDATED AT .O KSF SQUARE ROOT OF TIME METHOD DOUBLE DRAINAGE NO STONE CORRECTIONS TEST DATA REDUCTION (INITIAL, PRIMARY & SECONDARY)

*	SEC	9-	-	54	0	יי	cu	9-	16	15	Si	41	15	ņ	4-	-7	38	52
		-															- 1	
		.7073																
T90	MIN	9.80	.30	2.50	11.80	9.65	6.25	4.00	9.00	3.50	1.00	1.00	20.00	5.20	4.90	14.00	1.40	.75
DEND	(IN)	. 2442	. 2313	. 2297	. 2097	. 1863	. 1366	.1008	. 0654	00000	. 0023	. 0060	.0107	.0214	.0271	. 0362	. 0369	.0376
D 90	(IN)	. 2457	. 2315	- 2302	.2116	. 1874	.1429	. 1008	.0736	.0126	.0016	.0043	9600.	.0210	.0268	. 0359	.0366	.0372
00	CIN	. 2834	. 2315	. 2312	. 8894	. 2096	. 1862	1216	. 0946	. 0506	0000	. 0027	. 0062	.0118	. 0217	0.874	. 0363	.0371
GTBEGG	KSF	05	026	50	2	:	irc		2.0	4.0	2.0	0	2		: -	30	026	.02

ELIMINATING SECONDARY INITIAL, త TEST DATA REDUCTION FOR PRIMARY

8	. 666	333	.724		. 586 . 75	.035	.043	620.	.170	. 118	. 193	600.	.016
MV FT2/KIP	.30E+01	.57E+00	.23E+00	.115+00	.42E-01	.13E-02 .035	.31E-02	.11E-01	. 53E-01	.84E-01	. 28E+00	. 26E-01	.73E-01
PERM FT/DAY	.64E+00	30E-02	.22E-02	.14E-02	. 10E-02	. 56E-04	.14E-03	.26E-04	. 48E-03	.81E-03	.95E-03	.87E-03	.47E-02
CV FT2/DAY	3.41	.08	. 12	.17	.30	48	64.	- 05	. 10	.11	+0.	04.	.74
* AVG *STRESS	0.			۰.	* 1:0	o o	1.5	۰.	4.	«·	*	۰.	0.
RATIO 3.226	3,150	3,023	2.587	2,359	2, 183	1.842	1.866	1.889	1.957	1.993	2.051	2.054	2,055
STRAIN %	. 80	4.81	8.31 15.12	20.51	24.69	32,75	32, 19	31.63	30.03	29, 18	27.80	27.74	
SAMPLE HT IN	. 6946	. 6733	.6486	. 5622	. 5327	.4757	4796	. 4836	. 4949	. 5009	.5106	.5111	.5114
STRESS KSF 02	.026	e -:	vin	1.0	2.0	4.0	1.0	2	2.	-	.05	.026	.02

REGRUN BNI REGRUN BNI PLE IDENTIFF CIFIC STANTIFF TW 31988 DE SAMPLE (

	AEBS.				SaB1.			TS00.					- EBEO.	IVEO.
					esel.		3310.				8880.			
		5188.	veos.	CABI.			0000	0900	Voiso.			Sago.		.0376
													04.1	
		AAPE.								SABA.		EPPA.		
			446			28								
				-5		9-								

															۲,	
	GITAR														\$50.S	
		.0				* **	***	W	w	11-1				W . H	. 0	. 0
CA	FTS/DRY	3. 41	14.			100						01.				
PERM	YRIGHTS				0.00									. SO-3EP.	7E-0	SO-BYA.
VIN	PTSAKIP	10+30E.		· 575+00	14	00+311.				6	10-311.	10-HEE.	10-348.			10-3E-01
				. 399				1.132					811.	SE1.		ato.